Communication
[2] a) S. Haider, M. S. Alam, H. Hamid, Inflamm. Cell Signal. 2014, 1,
Lima, R. N. Oliveira, J. Braz. Chem. Soc. 2013, 24, 179; c) S. Shafi, Eur. J.
Med. Chem. 2012, 49, 324–333; d) H. Miyakoshi, J. Med. Chem. 2012, 55,
6427–6437; e) V. S. Pore, M. A. Jagtap, S. G. Agalave, A. K. Pandey, M. I.
Siddiqi, V. Kumar, P. K. Shukla, Med. Chem. Commun. 2012, 3, 484–488;
f) Y. Morzherin, P. E. Prokhorova, D. A. Musikhin, T. V. Glukhareva, Z. Fan,
Pure Appl. Chem. 2011, 83, 715–722.
[3] a) H. W. Bai, Z. J. Cai, S. Y. Wang, S. J. Ji, Org. Lett. 2015, 17, 2898–2901;
b) Y. Chen, G. Nie, Q. Zhang, S. Ma, H. Li, Q. Hu, Org. Lett. 2015, 17,
1118–1121; c) L. Wu, Y. Chen, J. Luo, Q. Sun, M. Peng, Q. Lin, Tetrahedron
Lett. 2014, 55, 3847–3850; d) S. Dey, T. Pathak, RSC Adv. 2014, 4, 9275–
9278; e) A. H. Banday, V. J. Hruby, Synlett 2014, 25, 1859–1862; f) S. Dey,
D. Datta, T. Pathak, Synlett 2011, 17, 2521–2524; g) N. T. Pokhodylo, V. S.
Matiychuk, M. D. Obushak, Synthesis 2009, 14, 2321–2323; h) D. Gao, H.
Zhai, M. Parvez, T. G. Back, J. Org. Chem. 2008, 73, 8057–8068.
Scheme 2. Reaction mechanism for the OrgAKC.
[4] For CuAAC reactions, see: a) C. W. Tornøe, C. Christensen, M. Meldal, J.
Org. Chem. 2002, 67, 3057–3064; b) V. V. Rostovtsev, L. G. Green, V. V.
Fokin, K. B. Sharpless, Angew. Chem. Int. Ed. 2002, 41, 2596–2599;
Angew. Chem. 2002, 114, 2708–2711; c) W. H. Binder, C. Kluger, Curr.
Org. Chem. 2006, 10, 1791–1815; d) QSAR Comb. Sci. 2007, 26,
Issue 11 –12 (Special Issue devoted to click chemistry); e) H. Nandivada,
X. Jiang, J. Lahann, Adv. Mater. 2007, 19, 2197–2208; f) S. Chuprakov, N.
Chernyak, A. S. Dudnik, V. Gevorgyan, Org. Lett. 2007, 9, 2333–2336;
g) J. F. Lutz, Z. Zarafshani, Adv. Drug Delivery Rev. 2008, 60, 958–970.
[5] For ZnAAC, RuAAC and IrAAC reactions, see: a) L. Zhang, X. Chen, P.
Xue, H. H. Y. Sun, I. D. Williams, K. B. Sharpless, V. V. Fokin, G. Jia, J. Am.
Rasmussen, L. Zhang, H. Zhao, Z. Lin, G. Jia, V. V. Fokin, J. Am. Chem.
or stepwise manner, which further converts into the 4-thio-
1,2,3-triazole 4 through rapid elimination of water induced by
the basic nature of amine 3a.
In summary, we have developed DBU-catalyzed and Raney
Ni-mediated regiospecific synthesis of 1,4,5-trisubstituted 4-
thio-1,2,3-triazoles 4 and 1,5-disubstituted 1,2,3-triazoles 5
from the easily available substrates 1-aryl-2-(arylthio)ethanones
and 1-alkyl-2-(alkylthio)ethanones 1 with aryl or alkyl azides 2
by [3+2] cycloaddition and subsequent desulfurization, respec-
tively. The OrgAKC reaction proceeds in very good yields with
high rate and selectivity using DBU as the catalyst in 0.75 h at
258C; and desulfurization of 4 performed with only 1.0 g of Ra-
ney Ni at 258C for 1–3 h, which highlights the efficacy of this
mild procedure. Further work is in progress to develop related
organocatalytic enolate-mediated asymmetric click reactions.
[6] For SPAAC reactions, see: a) N. J. Agard, J. A. Preschner, C. R. Bertozzi, J.
[7] a) S. W. Kwok, J. R. Fotsing, R. J. Fraser, V. O. Rodionov, V. V. Fokin, Org.
X. Song, Q. Lin, Synlett 2012, 23, 1529–1533.
Acknowledgements
We thank DST (New Delhi) for financial support. P.M.K., J.G.,
and G.S.R. thank CSIR (New Delhi) and UGC (New Delhi) for
their research fellowships.
[8] a) A. Krasinski, V. V. Fokin, K. B. Sharpless, Org. Lett. 2004, 6, 1237–1240;
Kloss, U. KÅhn, B. O. Jahn, M. D. Hager, H. GÅrls, U. S. Schubert, Chem.
Keywords: azides · click chemistry · heterocycles · ketones ·
organocatalysis
L. C. Goncalves, A. M. Deobald, L. Savegnago, D. Alves, M. W. Paixao, Tet-
Seus, B. Goldani, E. J. Lenard¼o, L. Savegnago, M. W. Paix¼o, D. Alves,
[1] For applications of 1,2,3-triazoles, see: a) A. C. Tome, Sci. Synth. 2004,
13, 415–601; b) L. S. Kallander, J. Med. Chem. 2005, 48, 5644–5647;
c) Y. L. Angell, K. Burgess, Chem. Soc. Rev. 2007, 36, 1674–1689; d) A.
Tam, U. Arnold, M. B. Soellner, R. T. Raines, J. Am. Chem. Soc. 2007, 129,
12670–12671; e) S. Ito, A. Satoh, Y. Nagatomi, Y. Hirata, G. Suzuki, T.
Kimura, A. Satow, S. Maehara, H. Hikichi, M. Hata, H. Kawamoto, H.
Ohta, Bioorg. Med. Chem. 2008, 16, 9817–9829; f) S. Ito, Y. Hirata, Y. Na-
gatomi, A. Satoh, G. Suzuki, T. Kimura, A. Satow, S. Maehara, H. Hikichi,
M. Hata, H. Ohta, H. Kawamoto, Bioorg. Med. Chem. Lett. 2009, 19,
5310–5313; g) T. Tsuritani, H. Mizuno, N. Nonoyama, S. Kii, A. Akao, K.
Sato, N. Yasuda, T. Mase, Org. Process Res. Dev. 2009, 13, 1407–1412;
h) J. M. Holub, K. Kirshenbaum, Chem. Soc. Rev. 2010, 39, 1325–1337;
i) S. G. Agalave, S. R. Maujan, V. S. Pore, Chem. Asian J. 2011, 6, 2696–
2718; j) see also: Chem. Asian J. 2011, 6, Issue 10 (Special Issue devoted
to click chemistry); k) M. Fujinaga, T. Yamasaki, K. Kawamura, K. Kumata,
A. Hatori, J. Yui, K. Yanamoto, Y. Yoshida, M. Ogawa, N. Nengaki, J.
Maeda, T. Fukumura, M. R. Zhang, Bioorg. Med. Chem. 2011, 19, 102–
110; l) I. E. Valverde, A. Bauman, C. A. Kluba, S. Vomstein, M. A. Walter,
T. L. Mindt, Angew. Chem. Int. Ed. 2013, 52, 8957–8960; Angew. Chem.
2013, 125, 9126–9129; m) A. Lauria, R. Delisi, F. Mingoia, A. Terenzi, A.
Martorana, G. Barone, A. M. Almerico, Eur. J. Org. Chem. 2014, 3289–
3306; n) S. Li, Y. Huang, Curr. Med. Chem. 2014, 21, 113–123.
b) A. B. Shashank, S. Karthik, R. Madhavachary, D. B. Ramachary, Chem.
Chem. Eur. J. 2015, 21, 16775 – 16780
16779
ꢀ 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim