1788
M. Mae et al. / Tetrahedron Letters 46 (2005) 1787–1789
2. (a) Schirlin, D.; Van Dorsselar, V.; Weber, F.; Weill, C.;
Altenburger, J. M.; Neises, B.; Flynn, G.; Remy, J. M.;
Tarnus, C. Bioorg. Med. Chem. 1993, 3, 3; (b) Sham, H.
L.; Eideburg, N. E.; Spanton, S. G.; Kohlbrenner, D. W.;
Betebenner, D. A.; Kempf, D. J.; Norbeck, D. W.; Platter,
J. J.; Erickson, J. W. J. Chem. Soc., Chem. Commun. 1991,
110.
3. Berkowitz, D. B.; Sloss, D. G. J. Org. Chem. 1995, 60,
7047, and references therein.
4. (a) Barnett, J. E. D. Carbon–Fluorine Compounds; Else-
vier: Amsterdam, The Netherlands, 1972; (b) Fluorinated
Carbohydrates; Taylor, N. F., Ed.; American Chemical
Society: Washington, DC, 1996.
OH
Ph
PhCHO, TBAF
THF
-100 oC, 30 min.
Ph
F
F
4 (90 %)
Ph
Allyl-Br, KF, CuI
THF
55 oC, 5 h
F
F
Ph
5 (65%)
TMS
F
F
Ph
Ph
2d
Bn-Br, KF, CuI
THF
55 oC, 5 h
Bn
5. (a) Conlin, R. T.; Huffaker, H. B.; Kwak, Y.-K. J. Am.
Chem. Soc. 1985, 107, 731; (b) Conlin, R. T.; Kwak, Y.-
W.; Huffaker, H. B. Organometallics 1983, 2, 343; (c)
Nativi, C.; Taddei, M. Tetrahedron 1989, 45, 1131.
6. (a) Qi, X.; Montgomery, J. J. Org. Chem. 1999, 64, 9310;
(b) Yasuda, M.; Saito, T.; Ueda, M.; Baba, A. Angew.
Chem., Int. Ed. 2004, 43, 1414; (c) Alcaide, B.; Almendros,
P.; Aragoncillo, C. Chem. Eur. J. 2002, 8, 1719; (d)
Schierle, K.; Vahle, R.; Steckhan, E. Eur. J. Org. Chem.
1998, 509; (e) Agami, C.; Bihan, D.; Hamon, L.; Kadouri-
Puchot, C.; Lusinchi, M. Eur. J. Org. Chem. 1998, 2461;
(f) Yoshikawa, E.; Kasahara, M.; Asao, N.; Yamamoto,
Y. Tetrahedron Lett. 2000, 41, 4499; (g) Alcaide, B.;
Almendros, P.; Aragoncillo, C.; Rodriguez-Acebes, R. J.
Org. Chem. 2001, 66, 5208; (h) Clive, D. L. J.; He, X.;
Postema, M. H. D.; Mashimbye, M. J. J. Org. Chem.
1999, 64, 4397; (i) Gaertzen, O.; Misske, A. M.; Wolbers,
P.; Hoffmann, H. M. R. Synlett 1999, 1041; (j) Karstens,
W. F. J.; Moolenaar, M. J.; Rutjes, F. P. J. T.;
Grabowska, U.; Speckamp, W. N.; Hiemstra, H. Tetra-
hedron Lett. 1999, 40, 8629; (k) Niimi, L.; Shiino, K.;
Hiraoka, S.; Yokozawa, T. Tetrahedron Lett. 2001, 42,
1721; (l) Baldwim, J. E.; Adlington, R. M.; Basak, A.
Chem. Commun. 1984, 1284; (m) Yu, C.-M.; Yoon, S.-K.;
Lee, S.-J.; Lee, J.-Y.; Kim, S. S. Chem. Commun. 1998,
2749.
7. (a) Hanzawa, Y.; Inazawa, K.; Kon, A.; Aoki, H.;
Kobayashi, Y. Tetrahedron Lett. 1987, 28, 659–662; (b)
Hanzawa, Y.; Kawagoe, K.; Inazawa, K.; Kobayashi, Y.
Tetrahedron Lett. 1988, 29, 5665–5666; (c) Kwok, P.-Y.;
Muellner, F. W.; Chen, C.-K.; Fried, J. J. Am. Chem. Soc.
1987, 109, 3684–3692; (d) Wang, Z.; Hammond, G. B.
Tetrahedron Lett. 2000, 41, 2339–2342; (e) Audouard, C.;
Barsukov, I.; Fawcett, J.; Griffith, G. A.; Percy, J. M.;
Pintat, S.; Smith, C. A. Chem. Commun. 2004, 1526.
8. (a) Amii, H.; Kobayashi, T.; Hatamoto, Y.; Uneyama, K.
Chem. Commun. 1999, 1323; (b) Amii, H.; Kobayashi, T.;
Uneyama, K. Synthesis 2000, 2001; (c) Amii, H.; Hata-
moto, Y.; Seo, M.; Uneyama, K. J. Org. Chem. 2001, 66,
7216; (d) Amii, H.; Kobayashi, T.; Terasawa, H.; Une-
yama, K. Org. Lett. 2001, 3, 3103; (e) Hata, H.; Kobaya-
shi, T.; Amii, H.; Uneyama, K.; Welch, J. T. Tetrahedron
Lett. 2002, 43, 6099; (f) Uneyama, K.; Kato, T. Tetrahe-
dron Lett. 1998, 39, 587; (g) Mae, M.; Amii, H.; Uneyama,
K. Tetrahedron Lett. 2000, 41, 7893; (h) Mae, M.;
Matsuura, M.; Amii, H.; Uneyama, K. Tetrahedron Lett.
2002, 43, 2069; (i) Kobayashi, T.; Nakagawa, T.; Amii, H.;
Uneyama, K. Org. Lett. 2003, 5, 4297; (j) Amii, H.;
Ichihara, Y.; Nakagawa, T.; Kobayashi, T.; Uneyama, K.
Chem. Commun. 2003, 2902.
F
F
6 (36%)
MeI, TBAF
THF
Me
0
oC, 30 min.
F
F
7 (26%)
Scheme 1.
silylated alkynes 1f,g generally gave good yields (entries
6 and 7). Using the same protocol, 1 reacted with trime-
thylstannyl chloride to give the stannane 3 in 75% yield
(entry 8).
Difluorotrimethylsilylmethyl 2 is a promising building
block because it is readily available, can be stored for
long periods of time, and it is highly reactive in the pres-
ence of a fluoride anion.11 To explore the reactivity of
3,3-difluoro-3-trimethylsilyl alkyne, 2d was subjected
to a fluoride anion promoted C–C bond formation with
electrophiles such as aldehydes and halides (Scheme 1).
The reaction of 2d with benzaldehyde proceeded
smoothly to give 4 in excellent yield. Allylation and benz-
ylation of 2d in the presence of KF and CuI gave 5 and 6
in good to moderate yields. Also, methylation of 2d in
the presence of TBAF succeeded to give 7 albeit in
low yield.
In conclusion, the selective metalation of bromodifluo-
ropropargyl 1, using Mg/Me3SiCl or Me3SnCl, allowed
access to difluoropropargylsilanes 2 and difluoropro-
pargylstannane 3 in good yields. The former reacted
with various electrophiles in the presence of fluoride an-
ion to give the corresponding difluoromethylene com-
pounds. Further utilization of difluoropropargylsilanes
and/or -stannanes are in progress in our laboratory.
Acknowledgements
The authors are grateful to the National Science Foun-
dation (CHE-0213502) and the University of Louisville
Research Foundation for their generous support.
9. Allenyl-propargyl organometallics often exist as an equi-
librium mixture, and few examples for the selective
synthesis of these unstable intermediates are known. (a)
Kobayashi, S.; Nishio, K. J. Am. Chem. Soc. 1995, 117,
6392; (b) Yamamoto, H. In Comprehensive Organic
Synthesis; Trost, B. M., Ed.; Pergamon: Oxford, 1991;
References and notes
1. Chou, T. S.; Heath, P. C.; Patterson, L. E.; Poteet, L. M.;
Laikin, R. E.; Hunt, A. H. Synthesis 1992, 565.