I. Hoffmann et al. / Biochimica et Biophysica Acta 1821 (2012) 1508–1517
1517
[5] U. Garscha, F. Jernerén, D. Chung, N.P. Keller, M. Hamberg, E.H. Oliw, Identification
of dioxygenases required for Aspergillus development. studies of products, stereo-
chemistry, and the reaction mechanism, J. Biol. Chem. 282 (2007) 34707–34718.
[6] F. Brodhun, I. Feussner, Oxylipins in fungi, FEBS J. 278 (2011) 1047–1063.
[7] J. Vicente, T. Cascon, B. Vicedo, P. Garcia-Agustin, M. Hamberg, C. Castresana, Role
of 9-lipoxygenase and alpha-dioxygenase oxylipin pathways as modulators of
local and systemic defense, Mol. Plant 5 (2012) 914–928.
[26] M. Hamberg, Stereochemistry of hydrogen removal during oxygenation of
linoleic acid by singlet oxygen and synthesis of 11(S)-deuterium-labeled linoleic
acid, Lipids 46 (2011) 201–206.
[27] E.H. Oliw, L. Hörnsten, H. Sprecher, Oxygenation of 5,8,11-eicosatrienoic acid by prosta-
glandin H synthase-2 of ovine placental cotyledons: isolation of 13-hydroxy-5,8,11-
eicosatrienoic and 11-hydroxy-5,8,12-eicosatrienoic acids, J. Chromatogr. B Analyt.
Technol. Biomed. Life Sci. 690 (1997) 332–337.
[8] M. Hamberg, I. Ponce de Leon, M.J. Rodriguez, C. Castresana, Alpha-dioxygenases,
Biochem. Biophys. Res. Commun. 338 (2005) 169–174.
[28] T. Caruso, A. Spinella, Cs2CO3 promoted coupling reactions for the preparation of
skipped diynes, Tetrahedron 59 (2003) 7787–7790.
[9] I. Ivanov, D. Heydeck, K. Hofheinz, J. Roffeis, V.B. O'Donnell, H. Kuhn, M. Walther, Molec-
ular enzymology of lipoxygenases, Arch. Biochem. Biophys. 503 (2010) 161–174.
[10] C. Su, E.H. Oliw, Manganese lipoxygenase. Purification and characterization, J. Biol.
Chem. 273 (1998) 13072–13079.
[29] C.A. Brown, V.K. Ahuja, Catalytic-hydrogenation. 6. Reaction of sodium-borohydride
with nickel salts in ethanol solution — P-2 nickel, a highly convenient, new, selective
hydrogenation catalyst with great sensitivity to substrate structure, J. Org. Chem. 38
(1973) 2226–2230.
[11] A. Wennman, F. Jernerén, M. Hamberg, E.H. Oliw, Catalytic convergence of Mn-
and iron lipoxygenases by replacement of a single amino acid, J. Biol. Chem. 287
(2012) 31757–31765.
[30] E.J. Corey, G. Schmidt, Useful procedures for the oxidation of alcohols involving
pyridinium dichromate in aprotic media, Tetrahedron Lett. (1979) 399–402.
[31] M. Hamberg, Stereochemistry of oxygenation of linoleic acid catalyzed by
[12] M.J. Knapp, J.P. Klinman, Environmentally coupled hydrogen tunneling. Linking
catalysis to dynamics, Eur. J. Biochem. 269 (2002) 3113–3121.
prostaglandin-endoperoxide H synthase-2, Arch. Biochem. Biophys. 349
(1998) 376–380.
[13] F.H. Westheimer, The magnitude of the primary kinetic isotope effect for com-
pounds of hydrogen and deuterium, Chem. Rev. 61 (1961) 265–273.
[14] M.P. Meyer, D.R. Tomchick, J.P. Klinman, Enzyme structure and dynamics affect hydro-
gen tunneling: the impact of a remote side chain (I553) in soybean lipoxygenase-1,
Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 1146–1151.
[15] C. Su, M. Sahlin, E.H. Oliw, A protein radical and ferryl intermediates are generat-
ed by linoleate diol synthase, a ferric hemeprotein with dioxygenase and hydro-
peroxide isomerase activities, J. Biol. Chem. 273 (1998) 20744–20751.
[16] G. Wu, J.M. Lu, W.A. van der Donk, R.J. Kulmacz, A.L. Tsai, Cyclooxygenase reaction
mechanism of prostaglandin H synthase from deuterium kinetic isotope effects,
J. Inorg. Biochem. 105 (2011) 382–390.
[32] M. Hamberg, Steric analysis of hydroperoxides formed by lipoxygenase oxygena-
tion of linoleic acid, Anal. Biochem. 43 (1971) 515–526.
[33] M.G. Malkowski, E.D. Thuresson, K.M. Lakkides, C.J. Rieke, R. Micielli, W.L. Smith, R.M.
Garavito, Structure of eicosapentaenoic and linoleic acids in the cyclooxygenase site
of prostaglandin endoperoxide H synthase-1, J. Biol. Chem. 276 (2001) 37547–37555.
[34] M. Hamberg, B. Samuelsson, Stereochemistry in the formation of 9-hydroxy-
10,12-octadecadienoic acid and 13-hydroxy-9,11-octadecadienoic acid from linoleic
acid by fatty acid cyclooxygenase, Biochim. Biophys. Acta 617 (1980) 545–547.
[35] R.C. Murphy, R.M. Barkley, K. Zemski Berry, J. Hankin, K. Harrison, C. Johnson, J. Krank, A.
McAnoy, C. Uhlson, S. Zarini, Electrospray ionization and tandem mass spectrometry of
eicosanoids, Anal. Biochem. 346 (2005) 1–42.
[17] A. Gupta, A. Mukherjee, K. Matsui, J.P. Roth, Evidence for protein radical-mediated
nuclear tunneling in fatty acid alpha-oxygenase, J. Am. Chem. Soc. 130 (2008)
11274–11275.
[36] M.O. Funk Jr., J.C. Andre, T. Otsuki, Oxygenation of trans polyunsaturated fatty
acids by lipoxygenase reveals steric features of the catalytic mechanism, Bio-
chemistry 26 (1987) 6880–6884.
[18] H.H. Danish, I.S. Doncheva, J.P. Roth, Hydrogen tunneling steps in cyclooxygenase-2
catalysis, J. Am. Chem. Soc. 133 (2011) 15846–15849.
[19] F. Brodhun, C. Göbel, E. Hornung, I. Feussner, Identification of PpoA from Aspergil-
lus nidulans as a fusion protein of a fatty acid heme dioxygenase/peroxidase and a
cytochrome P450, J. Biol. Chem. 284 (2009) 11792–11805.
[20] I. Hoffmann, F. Jernerén, U. Garscha, E.H. Oliw, Expression of 5,8-LDS of Aspergillus
fumigatus and its dioxygenase domain. A comparison with 7,8-LDS, 10-dioxygenase,
and cyclooxygenase, Arch. Biochem. Biophys. 506 (2011) 216–222.
[21] M. Hamberg, L.Y. Zhang, I.D. Brodowsky, E.H. Oliw, Sequential oxygenation of linoleic
acid in the fungus Gaeumannomyces graminis: stereochemistry of dioxygenase and
hydroperoxide isomerase reactions, Arch. Biochem. Biophys. 309 (1994) 77–80.
[22] A. Nadler, C. Koch, F. Brodhun, J.D. Wehland, K. Tittmann, I. Feussner, U.
Diederichsen, Influence of substrate dideuteration on the reaction of the bifunc-
tional heme enzyme psi factor producing oxygenase A (PpoA), Chembiochem
12 (2011) 728–737.
[23] D.A. Pratt, J.H. Mills, N.A. Porter, Theoretical calculations of carbon–oxygen bond
dissociation enthalpies of peroxyl radicals formed in the autoxidation of lipids,
J. Am. Chem. Soc. 125 (2003) 5801–5810.
[24] E.H. Oliw, F. Jernerén, I. Hoffmann, M. Sahlin, U. Garscha, Manganese lipoxygenase
oxidizes bis-allylic hydroperoxides and octadecenoic acids by different mechanisms,
Biochim. Biophys. Acta 1811 (2011) 138–147.
[25] E.H. Oliw, A. Wennman, I. Hoffmann, U. Garscha, M. Hamberg, F. Jernerén,
Stereoselective oxidation of regioisomeric octadecenoic acids by fatty acid
dioxygenases, J. Lipid Res. 52 (2011) 1995–2004.
[37] F. Recupero, C. Punta, Free radical functionalization of organic compounds cata-
lyzed by N-hydroxyphthalimide, Chem. Rev. 107 (2007) 3800–3842.
[38] H. Kitaguchi, K. Ohkubo, S. Ogo, S. Fukuzumi, Additivity rule holds in the hydro-
gen transfer reactivity of unsaturated fatty acids with a peroxyl radical: mecha-
nistic insight into lipoxygenase, Chem. Commun. (Camb) (2006) 979–981.
[39] W.B. Campbell, J.R. Falck, J.R. Okita, A.R. Johnson, K.S. Callahan, Synthesis of
dihomoprostaglandins from adrenic acid (7,10,13,16-docosatetraenoic acid) by
human endothelial cells, Biochim. Biophys. Acta 837 (1985) 67–76.
[40] D. Picot, P.J. Loll, R.M. Garavito, The X-ray crystal structure of the membrane pro-
tein prostaglandin H2 synthase-1, Nature 367 (1994) 243–249.
[41] H.W. Gardner, Soybean lipoxygenase-1 enzymically forms both (9S)- and (13S)-hydro-
peroxides from linoleic acid by a pH-dependent mechanism, Biochim. Biophys. Acta
1001 (1989) 274–281.
[42] A.R. Brash, C. Schneider, M. Hamberg, Applications of stereospecifically-labeled
fatty acids in oxygenase and desaturase biochemistry, Lipids 47 (2012)
101–116.
[43] C.C. Hwang, C.B. Grissom, Unusually large deuterium-isotope effect in soybean
lipoxygenase is not caused by a magnetic isotope effect, J. Am. Chem. Soc. 116
(1994) 795–796.
[44] M.R. Defelippis, C.P. Murthy, M. Faraggi, M.H. Klapper, Pulse radiolytic measurement of
redox potentials - the tyrosine and tryptophan radicals, Biochemistry 28 (1989)
4847–4853.
[45] M.J. Nelson, Catecholate complexes of ferric soybean lipoxygenase 1, Biochemis-
try 27 (1988) 4273–4278.