LETTER
Total Synthesis of the Furanocembrane bis-Deoxylophotoxin
1871
OTBS
OTBS
Me3Sn
O
Me3Sn
I
O
ii
i
I
5
PhSe
OH
OH
O
O
O
O
21
22
CHO
OTBS
OH
O
O
O
iii
iv, v
vi
OAc
OH
OAc
O
O
O
O
O
O
24
25
23
a, α-OAc (≡ 3b)
b, β-OAc
Scheme 3 Reagents: (i) LiHMDS, –78 °C, 20 min, then 6, 50 min, 75%; (ii) H2O2, CH2Cl2/pyridine, 1 h, 0 °C; (iii) AsPh3, Pd2dba3, 40 °C,
14 h, 20% from 21; (iv) Ac2O, Et3N, DMAP, r.t., 4 h, 40%; (v) CSA, MeOH:CH2Cl2, 3 h, 0 °C; (vi) Dess–Martin periodinane, pyridine, CH2Cl2,
3 h, 0 °C, 80% over two steps
system: Paterson, I.; Brown, R. E.; Urch, C. J. Tetrahedron
Lett. 1999, 40, 5807.
(9) Yamaguchi, M.; Hirao, I. Tetrahedron Lett. 1983, 24, 391.
(10) Negishi, E.; Van Horn, D. E.; Yoshida, T. J. Am. Chem. Soc.
1985, 107, 6639.
Acknowledgement
We thank the EPSRC for support of this work via a Fellowship (to
MC), and AstraZeneca for financial provision.
(11) For a synthesis of the enantiomer of 11 see: Tius, M. A.;
Trehan, S. J. Org. Chem. 1986, 51, 765.
References
(12) All new compounds showed satisfactory spectroscopic data
together with microanalytical and/or mass spectrometry
data. Compound 11 showed: max/cm–1: 1758; 1H NMR (360
MHz): = 6.11–6.10 (br m, 1 H, =CHI), 4.67–4.59 (m, 1 H,
CH–O), 2.67 (dd, 1 H, J = 7.4, 14.2, CHH–C=C), 2.57–2.48
(m, 3 H, CH2–C=O and CHH–C=C), 2.37–2.28 (m, 1 H,
CHH–CH2–C=O), 1.94–1.83 (m, 4 H, C=C–CH3, CHH–
CH2–C=O); 13C NMR (90 MHz): = 176.5 (C), 142.6 (C),
78.5 (CH), 78.2 (CH), 44.8 (CH2), 28.4 (CH2), 27.5 (CH2),
24.3 (CH3); [ ]20D +41.8 (c = 3.5, CH2Cl2); HRMS:
265.98081 (C8H11O2I requires: 265.98038).
(1) Fenical, W.; Okuda, R. K.; Bandurraga, M. M.; Culver, P.;
Jacobs, R. S. Science 1981, 212, 1512.
(2) Abramson, S. N.; Trischman, J. A.; Tapiolas, D. M.; Harold,
E. E.; Fenical, W.; Taylor, P. J. Med. Chem. 1991, 34, 1798.
(3) Missakian, M. G.; Burreson, B. J.; Scheuer, P. J.
Tetrahedron 1975, 31, 2513.
(4) For some other approaches to the synthesis of
furanocembranoids see: (a) Kondo, A.; Ochi, T.; Iio, H.;
Tokoroyama, T.; Siro, M. Chem. Lett. 1987, 1491.
(b) Gardner, M.; Paterson, I. Tetrahedron 1989, 45, 5283.
(c) Paquette, L. A.; Doherty, A. M.; Rayner, C. M. J. Am.
Chem. Soc. 1992, 114, 3910. (d) Rayner, C. M.; Astles, P.
C.; Paquette, L. A. J. Am. Chem. Soc. 1992, 114, 3926.
(e) Paquette, L. A.; Astles, P. C. J. Org. Chem. 1993, 58,
165. (f) Marshall, J. A.; Sehon, C. A. J. Org. Chem. 1997,
62, 4313; see also ref.8.
(5) Astley, M. P.; Pattenden, G. Synthesis 1992, 101.
(6) Hadjisoteriou, M. S.; Pattenden, G. unpublished results.
(7) (a) Pattenden, G.; Thom, S. M. Synlett 1993, 215.
(b) Boyce, R. J.; Pattenden, G. Tetrahedron Lett. 1996, 37,
3501. (c) Entwistle, D. A.; Jordan, S. I.; Montgomery, J.;
Pattenden, G. Synthesis 1998, 603. (d) Duncton, M. A. J.;
Pattenden, G. J. Chem. Soc., Perkin Trans. 1 1999, 1235.
(e) Remuiñán, M. J.; Pattenden, G. Tetrahedron Lett. 2000,
41, 7367. (f) Cid, M. B.; Pattenden, G. Tetrahedron Lett.
2000, 41, 7373.
Compound 6 showed: max/cm–1: 1722; 1H NMR (360 MHz):
= 9.51 (t, 1 H, J = 2.2, CHO), 6.47 (m, 1 H, =CH), 4.79 (br
s, 1 H, C=CHH), 4.76 (s, 1 H, C=CHH), 4.48 (s, 2 H, CH2-
OTBS), 3.11–3.01 (m, 1 H, CH–C=C), 2.84 (dd, 1 H, J =
14.7 and 6.1, CHH-furan), 2.71 (dd, 1 H, J = 14.7 and 8.7,
CHH-furan), 2.45 (dd, 2 H, J = 7.3 and 2.2, CH2–CHO), 1.73
(s, 3 H, =C–CH3), 0.92 (s, 9 H, Si(CH3)3), 0.38–0.13 (m, 9
H, Sn(CH3)3), 0.10 (s, 6 H, (Si(CH3)2); 13C NMR (90 MHz):
= 201.9 (CH), 158.6 (C), 154.2 (C), 146.2 (C), 122.3 (CH),
120.7 (C), 112.0 (CH2), 57.2 (CH2), 46.6 (CH2), 41.0 (CH),
31.1 (CH2), 26.5 (CH3), 20.0 (CH3), 18.5 (C), 1.1 (CH3),
–5.1 (CH3), –9.2 (CH3); [ ]20D +2.7 (c = 1.6, CH2Cl2).
(13) Galatsis, P.; Millan, S. D.; Ferguson, G. J. Org. Chem. 1997,
62, 5048.
(14) For a synthesis of ethyl 2-bromomethyl-3-furoate
see:Salimbeni, A.; Canevotti, R.; Paleari, F.; Poma, D.;
Daliari, S.; Fici, F.; Cirillo, R.; Renzetti, A. R.; Subissi, A.;
(8) In contemporaneous studies I. Paterson and co-workers have
used a similar approach to a simplified lophotoxin model
Synlett 2001, No. 12, 1869–1872 ISSN 0936-5214 © Thieme Stuttgart · New York