D
Synlett
K. Fujita et al.
Letter
Kanzaki, H.; Kishimoto, M.; Kitamura, M. Eur. J. Org. Chem. 2009,
89. (d) Jacinto, M. J.; Santos, O. H. C. F.; Jardim, R. F.; Landers,
ethynylbenzene (6a), namely no organic solvents was used for
washing of the catalyst 5 because this catalytic conversion was
sequentially carried out without the evaporation of solvents in
vacuo after the magnetic decantation.
7
R.; Rossi, L. M. Appl. Catal., A 2009, 360, 177. (e) Mori, K.; Kanai,
S.; Hara, T.; Mizugaki, T.; Ebitani, K.; Jitsukawa, K.; Kaneda, K.
Chem. Mater. 2007, 19, 1249. (f) Kotani, M.; Koike, T.;
Yamaguchi, K.; Mizuno, N. Green Chem. 2006, 8, 735. (g) Hu, A.;
Yee, G. T.; Lin, W. J. Am. Chem. Soc. 2005, 127, 12486.
(16) (a) Yuan, D.; Tang, H.; Xiao, L.; Huynh, H. V. Dalton Trans. 2011,
40, 8788. (b) Duan, H.; Sengupta, S.; Petersen, J. L.; Akhmedov,
N. G.; Shi, X. J. Am. Chem. Soc. 2009, 131, 12100.
21
22
23
24
(
7) (a) Cano, R.; Perez, J. M.; Ramon, D. J. Appl. Catal., A 2014, 470,
(17) NMR spectra of 8a, 8b, 8d, and 8f are in accordance with
those reported in the literature.
177. (b) Fujita, K.; Umeki, S.; Yasuda, H. Synlett 2013, 24, 947.
(
c) Fujita, K.; Umeki, S.; Yamazaki, M.; Ainoya, T.; Tsuchimoto,
(18) Selected Data for New Compounds
T.; Yasuda, H. Tetrahedron Lett. 2011, 52, 3137.
(E)-4-Bromo-N-{1-(4-tert-butylphenyl)ethylidene}aniline (8c)
White powder; yield: 72%; mp 138.0–138.6 °C. IR (KBr): 2963,
2901, 2866, 1628, 1601, 1474, 1296, 1211, 1007, 853, 841, 586
(
8) A previously reported magnetically recoverable phosphine–
gold(I) catalyst:Yang, W.; Wei, L.; Yi, F.; Cai, M. Catal. Sci. Tech-
nol. 2016, 6, in press; DOI: 10.1039/C5CY02159F.
–1 1
cm
. H NMR (400 MHz, CDCl ): δ = 7.89 (d, J = 8.4 Hz, 2 H,
3
(
9) Previously reported magnetically recoverable gold(III) catalysts:
ArH), 7.45 (t, J = 9.2 Hz, 4 H, ArH), 6.66 (d, J = 8.4 Hz, 2 H, ArH),
2.20 (s, 3 H, CH ), 1.35 [s, 9 H, C(CH ) ]. C NMR (100 MHz,
3 3 3
13
(
a) Sadeghzadeh, S. M. RSC Adv. 2014, 4, 43315. (b) Li, B.; Gao, L.;
Bian, F.; Yu, W. Tetrahedron Lett. 2013, 54, 1063.
10) (a) Liu, X.; Ma, Z.; Xing, J.; Liu, H. J. Magn. Magn. Mater. 2004,
70, 1. (b) Massart, R. IEEE Trans. Magn. 1981, 17, 1247.
11) Lambardo, M.; Easwar, S.; Marco, A. D.; Pasi, F.; Trombini, C. Org.
Biomol. Chem. 2008, 6, 4224.
CDCl ): δ = 166.0, 154.3, 151.0, 136.5, 132.0, 127.1, 125.5, 121.4,
3
(
(
(
(
(
116.1, 35.0, 31.3, 17.4. Anal. Calcd (%) for C18H20NBr: C, 65.46; H,
6.10; N, 4.24; Br, 24.19. Found (%): C, 65.53; H, 5.98; N, 4.28; Br,
24.11.
2
4-Bromo-N-(2-octylidene)aniline (8e)
12) Zeng, X.; Yang, X.; Zhang, Y.; Qing, C.; Zhang, H. Bioorg. Med.
Chem. Lett. 2010, 20, 1844.
Colorless oil; E/Z mixture; yield: 75%. IR (KBr): 2954, 2927,
–1
2857, 1661, 1480, 1365, 1231, 1167, 1069, 1008, 842, 654 cm
.
13) 1H NMR and 13C NMR data of 3 and 4 are shown in the Support-
ing Information.
1
H NMR and C NMR resonances were presented as two signals
13
1
(indicated as major and minor). H NMR (400 MHz, THF-d ): δ =
8
14) Selected Data for Compound 5
7.38–7.35 (m, 2 H, ArH), 6.56–6.52 (m, 2 H, ArH), 2.37 (t, J = 7.5
Hz, 2 H, CH , major), 2.11 (t, J = 7.9 Hz, 2 H, CH , minor), 2.08 (s,
Black powder. IR (KBr): 3086, 2916, 1651, 1558, 1512, 1458,
2
2
–1
1
0
042, 949, 903, 856 cm . Anal.; found (%): C, 2.29; H, 0.33; N,
.22; Cl, 0.87; Au, 3.36. An X-ray diffraction pattern is shown in
3 H, CH , minor), 1.74 (s, 3 H, CH , major), 1.69–1.62 (m, 2 H,
3
3
CH , major), 1.51–1.44 (m, 2 H, CH , minor), 1.42–1.32 (m, 6 H,
2
2
the Supporting Information.
15) General Procedure
(CH ) , major), 1.26–1.17 (m, 6 H, (CH ) , minor), 0.91 (t, J = 6.7
2
3
2
3
13
(
Hz, 3 H, CH , major), 0.85 (t, J = 7.0 Hz, 3 H, CH , minor).
C
3
3
To a solution of the alkyne 6 (9 mmol) and the amine 7 (3
mmol) were successively added the indicated amounts of the
magnetite-supported gold(I) catalyst 5 and an acid under an
argon atmosphere. The reaction mixture was stirred at the indi-
cated temperature for 24 h under an argon atmosphere. The
magnetite-supported gold(I) catalyst 5 was separated by mag-
netic decantation using an external magnet, and the reaction
mixture was then transferred out of the reaction vessel, fol-
lowed by washing of the catalyst 5 with the alkyne 6 three
times under argon atmosphere. The chemical yield of the imine
NMR (100 MHz, THF-d ): δ (major) = 172.0, 152.2, 132.32,
121.85, 115.8, 41.8, 32.5, 29.7, 26.5, 23.3, 19.3, 14.3; δ (minor) =
8
172.4, 151.7, 132.27, 121.80, 115.6, 34.5, 32.2, 29.9, 27.5, 25.6,
+
23.1, 14.2. MS (EI): m/z calcd for C14H20NBr: 281.0779 [M ];
found: 281.0780.
(19) In Table 2, entry 6, the magnetically recovered gold(I) catalyst 5
was washed with aniline (7b) after the hydroamination.
(20) The magnetically recovered gold(I) catalyst 5 was reused for the
subsequent hydroamination of the alkyne 6a by the addition of
6a, 7a, and trifluoromethanesulfonic acid to the reaction vessel.
(21) Mirabdolbaghi, R.; Dudding, T. Org. Lett. 2015, 17, 1930.
(22) Weemers, J. J. M.; Sypaseuth, F. D.; Bäuerlein, P. S.; van der
Graaff, W. N. P.; Filot, I. A. W.; Lutz, M.; Müller, C. Eur. J. Org.
Chem. 2014, 350.
8
and the corresponding ketone were determined by integrating
1
H NMR absorptions referring to an internal standard [4-tert-
butyltoluene (1 mmol)], which was added to the reaction mix-
ture. Any organic solvents were not used for washing of the cat-
alyst 5 in order to avoid the vaporization of products and an
internal standard during the evaporation of organic solvents in
vacuo. Also in the case of catalyst recycling as shown in Table 3,
(23) Liu, Y.; Du, H. J. Am. Chem. Soc. 2013, 135, 6810.
(24) Anderson, L. L.; Arnold, J.; Bergman, R. G. Org. Lett. 2004, 6,
2519.
©
Georg Thieme Verlag Stuttgart · New York — Synlett 2016, 27, A–D