RSC Advances
6-NH
Paper
6
2
xerogel (t1/2 ¼ 8.2 min) displays excellent catalytic 13 S. M. F. Vilela, P. Salcedo-Abraira, L. Micheron, E. L. Solla,
performance for the degradation of 2-CEES compared to the
P. G. Yot and P. Horcajada, Chem. Commun., 2018, 54,
13088–13091.
UiO-66-NH2 powder (t1/2 ¼ 29 min). Using these UiO-66-X
xerogels shortens the half-lives of HD and VX to 14.4 min and 14 W. Cui, X. Kang, X. Zhang and X. Cui, J. Phys. Chem. Solids,
1
.5 min, respectively. We also conrmed that there is little
obvious degradability difference between the UiO-66 and UiO- 15 J. Hou, A. F. Sapnik and T. D. Bennett, Chem. Sci., 2020, 11,
6-NH xerogels for nerve agents in actual situations. This 310–323.
contribution shows that Zr-MOFs xerogels have remarkable 16 D. B. Dwyer, N. Dugan, N. Hoffman, D. J. Cooke, M. G. Hall,
2019, 134, 165–175.
6
2
prospects for use in future CWA protective applications.
T. M. Tovar, W. E. Bernier, J. DeCoste, N. L. Pomerantz and
W. E. Jones, Jr, ACS Appl. Mater. Interfaces, 2018, 10, 34585–
3
4591.
Conflicts of interest
1
7 H. Liang, A. Yao, X. Jiao, C. Li and D. Chen, ACS Appl. Mater.
Interfaces, 2018, 10, 20396–20403.
There are no conicts to declare.
18 D. L. McCarthy, J. Liu, D. B. Dwyer, J. L. Troiano, S. M. Boyer,
J. B. DeCoste, W. E. Bernier and W. E. Jones, Jr, New J. Chem.,
Acknowledgements
2
017, 41, 8748–8753.
This work was nancially supported by the State Key Laboratory
of NBC Protection for Civilian Foundation of China
1
2
2
9 Y. Hara, K. Kanamori and K. Nakanishi, Angew. Chem., Int.
Ed., 2019, 58, 19047–19053.
0 Y. Dong, L. Cao, J. Li, Y. Yang and J. Wang, RSC Adv., 2018, 8,
3
(SKLNBC201807) and by the National Natural Science Founda-
tion of China (No. 22075319). The authors also acknowledge the
Analytical Instrumentation Center of Peking University.
2358–32367.
1 J. Zhao, L. Xu, Y. Su, H. Yu, H. Liu, S. Qian, W. Zheng and
Y. Zhao, J. Environ. Sci., 2021, 101, 177–188.
References
22 L. Wen, X. Chen, C. Chen, R. Yang, M. Gong, Y. Zhang and
Q. Fu, Arabian J. Chem., 2020, 13, 5669–5678.
1
M. Zhang, Y. Liu, J. Chen, H. Liu, X. Lu, J. Wu, Y. Zhang,
Y. Lin, Q. Liu, H. Wang, L. Guo, R. Gao, B. Xu and J. Xie,
Anal. Chem., 2020, 92, 10578–10587.
2
3 D. Xie, Y. Gu, H. Wang, Y. Wang, W. Qin, G. Wang, H. Zhang
and Y. Zhang, J. Colloid Interface Sci., 2019, 542, 269–280.
4 Y. Khabzina, J. Dhainaut, M. Ahlhelm, H. J. Richter,
H. Reinsch, N. Stock and D. Farrusseng, Ind. Eng. Chem.
Res., 2018, 57, 8200–8208.
2
2
3
4
S. S. Mondal and H. J. Holdt, Angew. Chem., Int. Ed., 2016, 55,
4
2–44.
J. B. DeCoste and G. W. Peterson, Chem. Rev., 2014, 114,
695–5727.
2
5 L. R. Redfern, L. Robison, M. C. Wasson, S. Goswami, J. Lyu,
T. Islamoglu, K. W. Chapman and O. K. Farha, J. Am. Chem.
Soc., 2019, 141, 4365–4371.
5
I. Stassen, B. Bueken, H. Reinsch, J. F. M. Oudenhoven,
D. Wouters, J. Hajek, V. Van Speybroeck, N. Stock,
P. M. Vereecken, R. Van Schaijk, D. De Vos and
R. Ameloot, Chem. Sci., 2016, 7, 5827–5832.
2
2
2
6 D. W. Lee, T. Didriksen, U. Olsbye, R. Blom and C. A. Grande,
Sep. Purif. Technol., 2020, 235, 116182–116193.
7 L. Li, S. Xiang, S. Cao, J. Zhang, G. Ouyang, L. Chen and
C. Y. Su, Nat. Commun., 2013, 4, 1774–1782.
8 A. Carne-Sanchez, G. A. Craig, P. Larpent, T. Hirose,
M. Higuchi, S. Kitagawa, K. Matsuda, K. Urayama and
S. Furukawa, Nat. Commun., 2018, 9, 2506–2513.
5
6
T. Islamoglu, Z. Chen, M. C. Wasson, C. T. Buru,
K. O. Kirlikovali, U. Afrin, M. R. Mian and O. K. Farha,
Chem. Rev., 2020, 120, 8130–8160.
C. Zhou, B. Yuan, S. Zhang, X. Yang and J. Zhong, Chem. Ind.
Eng. Prog., 2019, 38, 4614–4622.
2
9 J. Santos-Lorenzo, R. San Jos ´e -Velado, J. Albo, G. Beobide,
P. Casta n˜ o, O. Castillo, A. Luque and S. P ´e rez-Y ´a n˜ ez,
Microporous Mesoporous Mater., 2019, 284, 128–132.
0 X. Zhang, Y. Yang, L. Song, J. Chen, Y. Yang and Y. Wang, J.
Hazard. Mater., 2019, 365, 597–605.
1 C. Yin, Q. Liu, R. Chen, J. Liu, J. Yu, D. Song and J. Wang, Ind.
Eng. Chem. Res., 2019, 58, 1159–1166.
2 H. Wu, Y. S. Chua, V. Krungleviciute, M. Tyagi, P. Chen,
T. Yildirim and W. Zhou, J. Am. Chem. Soc., 2013, 135,
7
8
M. Taddei, Coord. Chem. Rev., 2017, 343, 1–24.
M. C. de Koning, M. van Grol and T. Breijaert, Inorg. Chem.,
2017, 56, 11804–11809.
3
3
3
9
J. M. Palomba, C. V. Credille, M. Kalaj, J. B. DeCoste,
G. W. Peterson, T. M. Tovar and S. M. Cohen, Chem.
Commun., 2018, 54, 5768–5771.
1
0 S. G. Ryu, M.-K. Kim, M. Park, S. O. Jang, S. H. Kim and
H. Jung, Microporous Mesoporous Mater., 2019, 274, 9–16.
1 B. Bueken, N. Van Velthoven, T. Willhammar, T. Stassin,
I. Stassen, D. A. Keen, G. V. Baron, J. F. M. Denayer,
R. Ameloot, S. Bals, D. De Vos and T. D. Bennett, Chem.
Sci., 2017, 8, 3939–3948.
1
10525–10532.
3
3
3 M. J. Katz, Z. J. Brown, Y. J. Colon, P. W. Siu, K. A. Scheidt,
R. Q. Snurr, J. T. Hupp and O. K. Farha, Chem. Commun.,
2013, 49, 9449–9451.
1
2 T. Tian, Z. Zeng, D. Vulpe, M. E. Casco, G. Divitini,
P. A. Midgley, J. Silvestre-Albero, J. C. Tan,
P. Z. Moghadam and D. Fairen-Jimenez, Nat. Mater., 2018,
4 J. Ren, H. W. Langmi, B. C. North, M. Mathe and
D. Bessarabov, Int. J. Hydrogen Energy, 2014, 39, 890–895.
17, 174–179.
22130 | RSC Adv., 2021, 11, 22125–22130
© 2021 The Author(s). Published by the Royal Society of Chemistry