J. Am. Chem. Soc. 2000, 122, 1205-1209
1205
Synthesis and Characterization of DNA-Modified Silicon (111)
Surfaces
†
†
‡
†
,†
Todd Strother, Wei Cai, Xinsheng Zhao, Robert J. Hamers, and Lloyd M. Smith*
Contribution from the Departments of Chemistry, 1101 UniVersity AVenue, UniVersity of Wisconsin,
Madison, Wisconsin 53706-1396, and Peking UniVersity, Beijing 100871, China
ReceiVed October 8, 1999
Abstract: Hydrogen-terminated Si(111) surfaces are modified by attachment of oligodeoxynucleotides and
characterized with respect to DNA surface density, chemical stability, and DNA hybridization binding specificity.
Surface functionalization employs the reaction of ω-unsaturated alkyl esters with the Si(111) surface using
UV irradiation. Cleavage of the ester using potassium tert-butoxide yields a carboxyl-modified surface, which
serves as a substrate for the attachment of DNA by means of an electrostatically adsorbed layer of polylysine
and attachment of thiol-modified DNA using a heterobifunctional cross-linker. The resultant DNA-modified
surfaces are shown to exhibit excellent specificity and chemical stability under the conditions of DNA
hybridization. This work provides an avenue for the development of devices in which the exquisite binding
specificity of biomolecular recognition is directly coupled to semiconductor devices.
Introduction
composite materials is far from optimum, and their surface
chemistry remains poorly characterized. Desired attributes of
DNA-modified surfaces include the following: (a) surface
flatness and chemical homogeneity; (b) ability to control surface
chemical properties such as polarity or hydrophobicity, which
impact strongly upon nonspecific binding properties; (c) ame-
nability to DNA hybridization (duplex formation) and enzymatic
manipulation with DNA-modifying enzymes such as ligase,
polymerase, and restriction enzymes; (d) ability to control DNA
surface density; (e) thermal and chemical stability; and (f)
reproducibility of preparation. Few if any of these criteria are
met by the surface chemistries presently in use.
DNA-modified surfaces are the subject of considerable current
activity in the field of biotechnology.
importance, several aspects of the performance of these novel
1-25
Despite their growing
†
University of Wisconsin.
Peking University.
‡
(
1) Linford, M. R.; Fenter, P.; Eisenberger, P. M.; Chidsey, C. E. D. J.
Am. Chem. Soc. 1995, 117, 3145-3155.
2) Chrisey, L. A.; Lee, G.; O’Ferrall, C. E. Nucleic Acids Res. 1996,
5, 3031-3039.
3) Frutos, A. G.; Liu, Q.; Thiel, A. J.; Sanner, A. M. W.; Condon, A.
E.; Smith, L. M.; Corn, R. M. Nucleic Acids Res. 1997, 25, 4748-4757.
4) Shchepinov, M. S.; Case-Green, S. C.; Southern, E. M. Nucleic Acids
Res. 1997, 25, 1155-1161.
5) Wagner, P.; Nock, S.; Spudich, J. A.; Volkmuth, W. D.; Chu, S.;
(
2
(
(
Remarkable advances have been made in microelectronics
technology over the last 20 years, primarily due to increasingly
powerful capabilities for the parallel fabrication of transistors
and other microelectronic devices on small length scales. A
similar trend has become evident in the fields of biology/
biotechnology, where arrays of tens of thousands of distinct
DNA molecules on planar substrates have proven useful for
the parallel analysis of genetic variation and gene expression
levels. The development of robust, well-characterized surfaces
and surface attachment strategies for biological analyses could
benefit greatly from the well-developed infrastructure that exists
in microelectronics. Previous researchers have successfully
(
Cicero, R. L.; Wade, C. P.; Linford, M. R.; Chidsey, C. E. D. J. Struct.
Biol. 1997, 119, 189-201.
(
6) Arnold, B. A.; Hepler, R. W.; Keller, P. M. BioTechniques 1998,
2
5, 106-110.
(
7) Bamdad, S. Biophys. J. 1998, 75, 1997-2003.
(8) Livache, T.; Fouque, B.; Roget, A.; Marchand, J.; Bidan, G.; Teoule,
R.; Mathis, G. Anal. Biochem. 1998, 255, 188-194.
9) Sieval, A. B.; Demirel, A. L.; Nissink, J. W. M.; Linford, M. R.;
van der Mass, J. H.; de Jeu, W. H.; Zuilhof, H.; Sudholter, E. J. R. Langmuir
998, 14, 1759-1768.
10) Smith, L. M.; Corn, R. M.; Condon, A. E.; Lagally, M. G.; Frutos,
A. G.; Liu, Q.; Thiel, A. J. J. Comput. Biol. 1998, 5, 255-267.
11) Yang, M.; Kong, R. Y. C.; Kazmi, M.; Leung, K. C. Chem. Lett.
998, 257-258.
12) Rasmussen, S. R.; Larsen, M. R.; Rasmussen, S. E. Anal. Biochem.
991, 30, 138-142.
13) Kremski, J. N.; Wooters, J. L.; Dougherty, J. P.; Meyers, R. E.;
Collins, M.; Brown, E. L. Nucleic Acids Res. 1987, 15, 2891-2909.
14) Liu, Q.; Frutos, A. G.; Thiel, A. J.; Corn, R. M.; Smith, L. M. J.
Comput. Biol. 1998, 5, 269-278.
15) Lund, V.; Schmid, R.; Rickwood, D.; Hornes, E. Nucleic Acids Res.
988, 16, 10860-10878.
16) Pan, S.; Castner, D. G.; Ratner, B. D. Langmuir 1998, 14, 3545-
550.
(
1
(
(
1
1
1
3
12
(
attached DNA to substrates such as latex beads, polystyrene,
24,26
19,22,23,27
3,20-22,28
optical fibers,
carbon electrodes,
gold,
and
(
2,11,25,29
oxidized silicon.
Although largely unexplored to date,
(
(21) Hashimoto, K.; Ito, K.; Ishimori, Y. Anal. Chem. 1994, 66, 3830-
3833.
(22) Pang, D.; Zhang, M.; Wang, Z.; Qi, Y.; Cheng, J.; Liu, Z. J.
Electroanal. Chem. 1996, 403, 183-188.
(23) Wang, J.; Fernandes, J. R.; Kubota, L. T. Anal. Chem. 1998, 70,
3699-3702.
(24) Piunno, P. A. E.; Krull, U. J.; Hudson, R. H. E.; Damha, M. J.;
Cohen, H. Anal. Chim. Acta 1994, 288, 205-214.
(25) Souteyrand, E.; Cloarec, J. P.; Martin, J. R.; Wilson, C.; Lawrence,
I.; Mikkelsen, S.; Lawrence, M. F. J. Phys. Chem. B 1997, 101, 2980-
2985.
(26) Henke, L.; Piunno, P. A. E.; McClure, A. C.; Krull, U. J. Anal.
Chim. Acta 1997, 344, 201-213.
(27) Millan, K. M.; Mikkelsen, S. R. Anal. Chem. 1993, 65, 2317-2323.
(
1
3
6
(
(17) Huang, J.; Dahlgren, D. A.; Hemminger, J. C. Langmuir 1994, 10,
26-628.
(18) Bain, C. D.; Troughton, B. E.; Tao, Y.; Evall, J.; Whitesides, G.
M.; Nuzzo, R. G. J. Am. Chem. Soc. 1989, 111, 321-335.
19) Millan, K. M.; Spurmanis, A. J.; Mikkelsen, S. R. Electroanalysis
992, 4, 929-932.
20) Zhao, Y.; Pang, D.; Wang, Z.; Cheng, J.; Qi, Y. J. Electroanal.
Chem. 1997, 431, 203-209.
(
1
(
1
0.1021/ja9936161 CCC: $19.00 © 2000 American Chemical Society
Published on Web 01/28/2000