Journal of the American Chemical Society
Page 4 of 6
Exploratory studies aimed at a synthesis of vinigrol. 3. Evaluation of a
lactone bridge as a conformational lock. J. Org. Chem. 2005, 70, 510−513.
p) Paquette, L. A.; Liu, Z.; Efremov, I. Exploratory studies aimed at a
synthesis of vinigrol. 4. Probe of possible means for direct connection of
the side arms and of ring-contraction alternatives. J. Org. Chem. 2005, 70,
514−518. (q) Morency, L.; Barriault, L. Studies toward the total synthesis
of vinigrol. Synthesis of the octalin ring. J. Org. Chem. 2005, 70,
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
(
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
8
841−8853. (r) Grisꢀ, C. M.; Tessier, G.; Barriault, L. Synthesis of the
This paper is dedicated to the memory of Professor Gilbert Stork
for his great contribution to the organic chemistry. This work was
supported by the Natural Science Foundation of China (Grant nos.
tricyclic core of vinigrol via an intramolecular Diels−Alder reaction. Org.
Lett. 2007, 9, 1545−1548. (s) Souweha, M. S.; Enright, G. D.; Fallis, A. G.
Vinigrol:ꢁ a compact, diene-transmissive Diels−Alder strategy to the
tricyclic core. Org. Lett. 2007, 9, 5163−5166. (t) Maimone, T. J.; Voica,
A.-F.; Baran, P. S. A concise approach to vinigrol. Angew. Chem., Int. Ed.
2008, 47, 3054–3056. (u) Morton, J. G. M.; Kwon, L. D.; Freeman, J. D.;
Njardarson, J. T. Thieme chemistry journal awardees − where are they
now? Efforts towards the total synthesis of vinigrol. Synlett 2009, 23−27.
2
1402083, 21502087 and 21522204) and the Shenzhen Science
and Technology Innovation Committee (Grant nos.
JCYJ20170412152454807 and JSGG20160301103446375). We
would also like to thank Prof. N. Burns at Stanford, Prof. T.
Maimone at Berkeley, Prof. T. Luo and Dr. X. Yu at Peking for
helpful discussions.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
(
v) Morton, J. G. M.; Kwon, L. D.; Freeman, J. D.; Njardarson, J. T. An
Adler–Becker oxidation approach to vinigrol. Tetrahedron Lett. 2009, 50,
684−1686. (w) Morton, J. G. M.; Draghici, C.; Njardarson, J. T. Rapid
assembly of vinigrol’s unique carbocyclic skeleton. Org. Lett. 2009, 11,
492−4495. (x) Gentric, L; Goff, X. L.; Ricard, L.; Hanna, I. Toward the
1
REFERENCES:
(
1) (a) For isolation, see: (a) Uchida, I.; Ando, T.; Fukami, N.; Yoshida,
K.; Hashimoto, M.; Tada, T.; Koda, S.; Morimoto, Y. The structure of
vinigrol, novel diterpenoid with antihypertensive and platelet
4
total synthesis of vinigrol: synthesis of epi-C-8-dihydrovinigrol. J. Org.
Chem. 2009, 74, 9337−9344. (y) Wang, X.-L.; Lu, Y.-Y.; Wang, -Y. J.;
Wang, X.; Yao, H.-Q.; Lin, G.-Q.; Sun, B.-F. A novel synthetic approach
to the bicyclo[5.3.1]undecan-11-one framework of vinigrol. Org. Biomol.
Chem. 2014, 12, 3562−3566.
(4) For selected dissertations on studies towards vinigrol, see: (a)
Guevel, R. Ph.D. Thesis, The Ohio State University, 1994, (b) Goodman,
S. N. Ph.D. Thesis, Harvard University, 2000. (c) Efremov, I. V. Ph.D.
Thesis, The Ohio State University, 2001. (d) Tan, W. F. Ph.D. Thesis,
Lanzhou University, 2001. (d) Peng, Y. Ph.D. Thesis, Lanzhou University,
a
aggregation-inhibitory activities. J. Org. Chem. 1987, 52, 5292–5293. For
biological activity studies, see: (b) Ando, T.; Tsurumi, Y.; Ohata, N.;
Uchida, I.; Yoshida, K.; Okuhara, M. Vinigrol, a novel antihypertensive
and platelet aggregation inhibitory agent produced by a fungus, Vigaria
nigra I. Taxonomy, fermentation, isolation, physicochemical and
biological properties. J. Antibiot. 1988, 41, 25–30. (c) Ando, T.; Yoshida,
K.; Okuhara, M. Vinigrol,
a novel antihypertensive and platelet
aggregation inhibitory agent produced by a fungus, Vigaria nigra II.
Pharmacological characteristics.J. Antibiot. 1988, 41, 31–35. (d) Norris, D.
B.; Depledge, P.; Jackson, A. P. Tumor necrosis factor antagonist. PCT
Int. Appl. WO 9107953, 1991. (e) Keane, J. T. Combination therapy for
the treatment of inflammatory diseases. PCT Int. Appl. WO 2001000229,
2
005. (d) Morency, L. Ph.D. Thesis, University of Ottawa, 2006. (e)
Brekan, J. A. Ph.D. Thesis, State University of New York, 2008. (f)
Maimone, T. J. Ph.D. Thesis, The Scripps Research Institute, 2009. (g)
Shi, J. Ph.D. Thesis, The Scripps Research Institute, 2011. (d) Wang, X. L.
Ph.D. Thesis, University of Chinese Academy of Sciences, 2015.
2
001. (f) Onodera, H.; Ichimura, M.; Sakurada, K.; Kawabata, A.; Ota, T.
Remedy for neurological disease. PCT Int. Appl. WO 2006077954, 2006.
2) For an excellent review of modern approaches to terpene synthesis,
(5) (a) For reviews on vinigrol: (a) Tessier, G.; Barriault, L. The
(
conquest of vinigrol. Creativity, frustrations, and hope. Org. Prep. Proced.
Int. 2007, 39, 311−353. (b) Huters, A. D.; Garg, N. K. Synthetic studies
inspired by vinigrol. Chem. - Eur. J. 2010, 16, 8586−8595. (c) Lu, J.-Y.;
Hall, D. G. Fragmentation enables complexity in the first total synthesis of
vinigrol. Angew. Chem., Int. Ed. 2010, 49, 2286−2288. (d) Draghici, C.;
Njardarson, J. T. Synthetic approaches and syntheses of vinigrol, a unique
diterpenoid. Tetrahedron 2015, 71, 3775−3793. (e) Betkekar, V. V.;
Kaliappan, K. P. Strategic innovations for the synthesis of vinigrol.
Tetrahedron Lett. 2018, 59, 2485−2501.
see: Maimone, T. J.; Baran, P. S. Modern synthetic efforts toward
biologically active terpenes. Nat. Chem. Biol. 2007, 7, 396–407.
(3) (a) For synthetic reports on vinigrol: (a) Devaux, J.-F; Hanna, I.;
Lallemand, J.-Y. A short synthesis of the tricyclic ring system of vinigrol.
J. Org. Chem. 1993, 58, 2349−2350. (b) Devaux, J.-F.; Hanna, I.; Fraisse,
P.; Lallemand, J.-Y. Unexpected effect of an hydroxyl group on -facial
selectivity in the nucleophilic addition to bicyclo[2.2.2]octan-2-ones.
Tetrahedron Lett. 1995, 36, 9471−9474. (c) Devaux, J.-F.; Hanna, I.;
Lallemand, J.-Y.; Prange, T. J. Chem. Res. Synth. 1996, 32−33. (d) Mehta,
G.; Reddy, K. S. A facile oxy-cope rearrangement route to functionalized
bicyclo[5.3.1]undecane ring system present in taxol and vinigrol
diterpenoids. Synlett 1996, 625−627. (e) Kito, M.; Sakai, T.; Haruta, N.;
Shirahama, H.; Matsuda, -F. Stereoselective cyclization of cis-decalin
skeleton of vinigrol via ketyl-olefin coupling promoted by samarium(II)
iodide. Synlett 1996, 1057−1060. (f) Devaux, J.-F.; Hanna, I.; Lallemand,
J.-Y. Studies toward the synthesis of vinigrol. first construction of the
tricyclic ring system. J. Org. Chem. 1997, 62, 5062−5068. (g) Kito, M.;
Sakai, T.; Shirahama, H.; Miyashita, M.; Matsuda, F. Construction of
(6) Maimone, T. J.; Shi, J.; Ashida, S.; Baran, P. S. Total synthesis of
vinigrol. J. Am. Chem. Soc. 2009, 131, 17066−17067.
(7) (a) Poulin, J.; Grise-Bard, C. M.; Barriault, L. A formal synthesis of
vinigrol. Angew. Chem., Int. Ed. 2012, 51, 2111−2114. Based on Barriault
approach, Kaliappan and co-workers reported an asymmetric formal
synthesis of vinigrol, see: (b) Betkekar, V. V.; Sayyad, A. A.; Kaliappan,
K. P. A domino enyne/IMDA approach to the core structure of (−)
vinigrol. Org. Lett. 2014, 16, 5540−5543.
(8) (a) Yang, Q.; Njardarson, J. T.; Draghici, C.; Li, F. Total synthesis
of vinigrol. Angew. Chem., Int. Ed. 2013, 52, 8648−8651. (b) Yang, Q.;
Draghici, C.; Njardarson, J. T.; Li, F.; Smith, B. R.; Das, P. Evolution of
an oxidative dearomatization enabled total synthesis of vinigrol. Org.
Biomol. Chem. 2014, 12, 330−344.
8-membered ring skeleton of vinigrol via SmI
Synlett 1997, 219−220. (h) Matsuda, F.; Sakai, T.; Okada, N.; Miyashita,
M. Extremely convenient cyclization of medium rings using SmI
2
-promoted barbier coupling.
2
.
Tetrahedron Lett. 1998, 39, 863−864. (i) Matsuda, F.; Kito, M.; Sakai, T.;
Okada, N.; Miyashita, M.; Shirahama, H. Efficient construction of
(9) Yu, X.; Xiao, L.; Wang, Z.; Luo, T. Scalable total synthesis of
(−)-vinigrol. J. Am. Chem. Soc. 2019, 141, 3440−3443.
8
-membered ring framework of vinigrol through SmI
2
-induced coupling
(10) (a) Silva, L. Construction of cyclopentyl units by ring contraction
reactions. Tetrahedron 2002, 58, 9137-9161. (b) D. Redmore and C. D.
Gutsche, Carbocyclic ring contraction reactions, in Advances in Alicyclic
Chemistry, ed. H. Hart and G. J. Karabastos, Academic Press, New York
and London, 1971, vol. 3, p. 1-138.
(11) Mak, J. Y. W.; Pouwer, R. H.; Williams, C. M. Natural products
with anti-Bredt and bridgehead double bonds. Angew. Chem., Int. Ed.
2014, 53, 13664-13688.
(12) For the type II intramolecular [5+2] cycloaddition, see: (a) Mei, G.;
Liu, X.; Qiao, C.; Chen, W.; Li, C.-C. Type II intramolecular [5+2]
cycloaddition: facile synthesis of highly functionalized bridged ring
systems. Angew. Chem. Int. Ed. 2015, 54, 1754-1758. (b) Liu, X.; Liu, J.;
Zhao, J.; Li, S.; Li, C.-C. Toward the total synthesis of eurifoloid A. Org.
Lett. 2017, 19, 2742-2745. (c) Liu, J. Y.; Wu, J. L.; Fan, J. H.; Yan, X.;
Mei, G. J.; Li, C. C. Asymmetric total synthesis of cyclocitrinol. J. Am.
Chem. Soc. 2018, 140, 5365-5369.
cyclization. Tetrahedron 1999, 55, 14369−14380. (j) Gentric, L.; Hanna,
I.; Ricard, L. Synthesis of the complete carbocyclic skeleton of vinigrol.
Org. Lett. 2003, 5, 1139−1142. (k) Gentric, L.; Hanna, I.; Huboux, A.;
Zaghdoudi, R. Rate acceleration of anionic oxy-cope rearrangements
induced by an additional unsaturation. Org. Lett. 2003, 5, 3631−3634. (l)
Paquette, L. A.; Guevel, R.; Sakamoto, S.; Kim, H. I.; Crawford, J.
Convergent enantioselective synthesis of vinigrol, an architecturally novel
diterpenoid with potent platelet aggregation inhibitory and
antihypertensive properties. 1. Application of anionic sigmatropy to
construction of the octalin substructure. J. Org. Chem. 2003, 68,
6
096−6107. (m) Morency, L.; Barriault, L. Stereoselective synthesis of
the cis-decalin subunit of vinigrol via three pericyclic reactions in cascade.
Tetrahedron Lett. 2004, 45, 6105−6107. (n) Paquette, L. A.; Efremov, I.;
Liu, Z. Exploratory studies aimed at a synthesis of vinigrol. 2. Attempts to
exploit ring-closing metathesis for construction of the central cyclooctane
belt. J. Org. Chem. 2005, 70, 505−509. (o) Paquette, L. A.; Efremov, I.
(13) For selective examples of type
I intramolecular [5+2]
ACS Paragon Plus Environment