Journal of the American Chemical Society
Communication
due to the important rearrangement of the coordination sphere
during the redox processes. After removal of Cs+, the reduction
wave is shifted to lower potential (Epc = −2.43 V), indicating
that the reduction of complex 1 is more difficult in the absence
of coordinated Cs+.
Complexes 2 and 3 provide the first examples of isolated
molecular nitride complexes containing uranium in the +III
oxidation state. These systems are expected to show high
reactivity with a wide range of substrates because of the low
oxidation state of uranium.11 Previous reactivity studies of
nitride-bridged uranium compounds are limited to a single
example in which the UIVNUIV fragment reacts as a
masked metallonitrene with NaCN.6f
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Experimental procedures and spectral data (PDF)
Crystallographic data for 4 (CIF)
Crystallographic data for 3 (CIF)
Crystallographic data for 2·2THF (CIF)
AUTHOR INFORMATION
Corresponding Author
■
Preliminary reactivity studies carried out with CS2 showed
that complexes 2 and 3 can transfer the nitride group to
electrophilic substrates in spite of the fact that the nitride group
is located in a protective pocket provided by the siloxide ligands
and the multimetallic binding by two U and three Cs cations
complexes 2 and 3 with CS2 is in agreement with a nucleophilic
character of the nitride. Notably, the addition of 13CS2 at −40
°C in THF to the bridging nitride led to the isolation of the
disulfide-bridged diuranium(IV) complex (Cs(THF))2[{U-
(OSi(OtBu)3)3}2(μ-S)2] (4) in 25% yield (Scheme 2), which
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
This work was supported by the Swiss National Science
Foundation and by the Ecole Polytechnique Fed
■
́
er
́
ale de
Lausanne (EPFL). We thank Euro Solari for carrying out the
elemental analyses and for technical support. We thank Marta
Falcone for some preliminary experiments.
REFERENCES
■
15.
Scheme 2. Reactivities of Cs2[{U(OSi(OtBu)3)3}2(μ-N)] (2)
and Cs3[{U(OSi(OtBu)3)3}2(μ-N)] (3) with CS2
(1) King, D. M.; Liddle, S. T. Coord. Chem. Rev. 2014, 266-267, 2−
(2) (a) Silva, G. W. C.; Yeamans, C. B.; Sattelberger, A. P.;
Hartmann, T.; Cerefice, G. S.; Czerwinski, K. R. Inorg. Chem. 2009, 48,
10635−10642. (b) Black, L.; Miserque, F.; Gouder, T.; Havela, L.;
Rebizant, J.; Wastin, F. J. Alloys Compd. 2001, 315, 36−41. (c) Green,
D. W.; Reedy, G. T. J. Chem. Phys. 1976, 65, 2921−2922. (d) Andrews,
L.; Wang, X. F.; Gong, Y.; Kushto, G. P.; Vlaisavljevich, B.; Gagliardi,
L. J. Phys. Chem. A 2014, 118, 5289−5303.
(3) Streit, M.; Ingold, F. J. Eur. Ceram. Soc. 2005, 25, 2687−2692.
(4) (a) Haber, F. Ammonia. German patent DE 229126, 1909.
(b) Fox, A. R.; Bart, S. C.; Meyer, K.; Cummins, C. C. Nature 2008,
455, 341−349.
was characterized by X-ray diffraction (see the Supporting
Information). 13C NMR monitoring of the reaction mixture
allowed the product of nitride transfer to CS2 to be identified as
thiocyanate (SCN−). The disulfide complex is thus likely to be
formed by extrusion of CsSCN from a highly reactive
dithiocarbamate intermediate. Proton NMR studies showed
that the formation of 4 occurs immediately even at low
temperature, and it was not possible to isolate any intermediate.
Similar reactivity has been reported for a terminal V(V) nitride,
but in that case the decomposition was slower and the
dithiocarbamate intermediate was isolated.12 However, the
formation of 4 involves oxidation of the metal center from
U(III) to U(IV), and therefore, additional products must be
formed that remain unidentified.
In conclusion, here we have expanded the family of
molecular uranium nitride complexes to include the +III
oxidation state. This has been accomplished by reducing the
U(IV) analogue with cesium metal. Structural studies point to
the presence of UIII−N multiple bonding. Future studies will be
directed to further investigation of the nature of the U−N
bonding in these systems. The reported reactivity with CS2 is in
agreement with a nucleophilic character of the nitride group.
These complexes associating the highly reducing uranium(III)
ion to a multiply bonded nitride group provide unprecedented
precursors for the discovery of novel reactivity and unusual
transformations. We are currently investigating the reactivities
of these complexes with various substrates.
(5) (a) Neidig, M. L.; Clark, D. L.; Martin, R. L. Coord. Chem. Rev.
2013, 257, 394−406. (b) Kaltsoyannis, N. Inorg. Chem. 2013, 52,
3407−3413. (c) Hayton, T. W. Chem. Commun. 2013, 49, 2956−2973.
(6) (a) Evans, W. J.; Kozimor, S. A.; Ziller, J. W. Science 2005, 309,
1835−1838. (b) Korobkov, I.; Gambarotta, S.; Yap, G. P. A. Angew.
Chem., Int. Ed. 2002, 41, 3433−3436. (c) Todorova, T. K.; Gagliardi,
L.; Walensky, J. R.; Miller, K. A.; Evans, W. J. J. Am. Chem. Soc. 2010,
132, 12397−12403. (d) Nocton, G.; Pecaut, J.; Mazzanti, M. Angew.
Chem., Int. Ed. 2008, 47, 3040−3042. (e) Fortier, S.; Wu, G.; Hayton,
T. W. J. Am. Chem. Soc. 2010, 132, 6888−6889. (f) Fox, A. R.; Arnold,
P. L.; Cummins, C. C. J. Am. Chem. Soc. 2010, 132, 3250−3251.
(g) Camp, C.; Pecaut, J.; Mazzanti, M. J. Am. Chem. Soc. 2013, 135,
12101−12111. (h) Maria, L.; Santos, I. C.; Sousa, V. R.; Marcalo, J.
Inorg. Chem. 2015, 54, 9115−9126.
(7) (a) Thomson, R. K.; Cantat, T.; Scott, B. L.; Morris, D. E.;
Batista, E. R.; Kiplinger, J. L. Nat. Chem. 2010, 2, 723−729. (b) King,
D. M.; Tuna, F.; McInnes, E. J. L.; McMaster, J.; Lewis, W.; Blake, A.
J.; Liddle, S. T. Nat. Chem. 2013, 5, 482−488. (c) King, D. M.; Tuna,
F.; McInnes, E. J. L.; McMaster, J.; Lewis, W.; Blake, A. J.; Liddle, S. T.
Science 2012, 337, 717−720. (d) King, D. M.; McMaster, J.; Tuna, F.;
McInnes, E. J. L.; Lewis, W.; Blake, A. J.; Liddle, S. T. J. Am. Chem. Soc.
2014, 136, 5619−5622.
(8) Cleaves, P. A.; King, D. M.; Kefalidis, C. E.; Maron, L.; Tuna, F.;
McInnes, E. J. L.; McMaster, J.; Lewis, W.; Blake, A. J.; Liddle, S. T.
Angew. Chem., Int. Ed. 2014, 53, 10412−10415.
(9) (a) Cloke, F. G. N.; Hitchcock, P. B. J. Am. Chem. Soc. 2002, 124,
9352−9353. (b) Roussel, P.; Scott, P. J. Am. Chem. Soc. 1998, 120,
1070−1071.
(10) Stewart, J. L.; Andersen, R. A. Polyhedron 1998, 17, 953−958.
C
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX