C O M M U N I C A T I O N S
4 in Table 1). The [PhCH2B(C6F5)3]- counterion seems to play
important roles in the course of transformation of CO2 and R3SiH
into CH2(OSiR3). The resulting bis(silyl)acetal is subsequently
reduced by R3SiH to CH4 and (R3Si)2O. This final step was found
to be facilitated by a catalytic amount of B(C6F5)3 alone, and
B(C6F5)3 is known to act as an effective catalyst for hydrosilane
reduction of a variety of aldehydes, ketones, esters, ethers, and
alcohols.11 The [PhCH2B(C6F5)3]- counterion slowly decomposed
during the reaction to generate B(C6F5)3, as monitored by 19F NMR
spectroscopy. It is noteworthy that the yield of bis(silyl)actal was
increased with a (L3)Zr(CH2Ph)2/B(C6F5)3 ratio equal to 1.96 to
prevent the release of free B(C6F5)3, whereas the use of excess
B(C6F5)3 promoted conversion of CH2(OSiEt3)2 into CH4 and (Et3-
Si)2O (entries 2 and 3 in Table 2).
The method for catalytic reduction of CO2 presented here offers
some significant advantages, since it proceeds under mild conditions
and permits complete reduction of CO2 to CH4. Another curious
aspect of this system is the formation of polysiloxane from CO2
and hydrosilane in chemical CO2 fixation. The present results are
promising, but we note that catalytic activity will need to be
improved and the long-term stability and performance of the catalyst
demonstrated.
Figure 1. (A) 13C{1H} NMR spectra showing conversion of 13CO2 (4) to
13CH2(OSiEt3)2 (b) to 13CH4 (0) using 1.5 mol % catalyst (L3)Zr(CH2-
Ph)2/ B(C6F5)3 at room temperature; (B) 13C NMR spectrum of the reaction
mixture after 8 h at room temperature.
Acknowledgment. The authors acknowledge Institute for Mo-
lecular Science and the Ministry of Education, Culture, Sports,
Science and Technology, Japan, for financial support for this
research.
Table 2. Reduction of CO2 with Hydrosilanes by 3/B(C6F5)3 at
Room Temperaturea
1
entry
substrate
product
TOF (h-
)
TONb
yield (%)c
time (h)
1
2
3
Et2MeSiH (Et2MeSi)2O
7.3
1.1
1.2
211
180
203
93
93
82
11
64
28
45
46
74
29
162
165
Et3SiH
Et3SiH
(Et3Si)2O
(Et3SiO)2CH2
(Et3Si)2O
Supporting Information Available: Experimental procedures. This
4
Ph3SiH
(Ph3SiO)2CH2
(Ph3Si)2O
0.13
50
384
References
5
6
7
Et2SiH2
Ph2SiH2
PhSiH3
(Et2SiO)n
(Ph2HSi)2O
(PhSiO1.5
0.57
0.29
1.1
108
49
162
189
168
145
(1) (a) Arakawa, H.; Aresta, M.; Armor, J. N.; Barteau, M. A.; Beckman, E.
J.; Bell, A. T.; Bercaw, J. E.; Creutz, C.; Dinjus, E.; Dixon, D. A.; Domen,
K.; DuBois, D. L.; Eckert, J.; Fujita, E.; Gibson, D. H.; Marks, T. J.; et
al. Chem. ReV. 2001, 101, 953-996. (b) Olah, G. A. Angew. Chem., Int.
Ed. 2005, 44, 2636-2639.
(2) (a) Kawaguchi, H.; Matsuo, T. Angew. Chem., Int. Ed. 2002, 41, 2792-
2794. (b) Matsuo, T.; Kawaguchi, H. J. Am. Chem. Soc. 2005, 127,
17198-17199.
(3) (a) Jessop, P. G.; Joo´, F.; Tai, C.-C. Coord. Chem. ReV. 2004, 248, 2425-
2442. (b) Tanaka, K.; Ooyama, D. Coord. Chem. ReV. 2002, 226, 211-
218. (b)Yin, X.; Moss, J. R. Coord. Chem. ReV. 1999, 181, 2759. (c)
Gibson, D. H. Chem. ReV. 1996, 96, 2063-2096. (d) Jessop, P. G.; Ikariya,
T.; Noyori, R. Chem. ReV. 1995, 95, 259-272. (e) Jessop, P. G.; Ikariya,
T.; Noyori, R. Nature 1994, 368, 231-233. (f) Leitner, W. Angew. Chem.,
Int. Ed. Engl. 1996, 34, 2207-2221. (g) Tsai, J.-C.; Nicholas, K. M. J.
Am. Chem. Soc. 1992, 114, 5117-5124. (h) Inoue, Y.; Izumida, H.; Sasaki,
Y.; Hashimoto, H. Chem. Lett. 1976, 863-864. (i) Laitar, D. S.; Mu¨ller,
P.; Sadighi, J. P. J. Am. Chem. Soc. 2005, 127, 17196-17197.
(4) (a) Fisher, B.; Eisenberg, R. J. Am. Chem. Soc. 1980, 102, 7361-7363.
(b) Simo´n-Manso, E.; Kubiak, C. P. Organometallics 2005, 24, 96-102.
(c) Miedaner, A.; Curtis, C. J.; Barkley, R. M.; DuBois, D. L. Inorg. Chem.
1994, 33, 5482-5490. (d) Nagao, H.; Mizukawa, T.; Tanaka, K. Inorg.
Chem. 1994, 33, 3415-3420.
(5) (a) Darensbourg, D. J.; Niezgoda, S. A.; Draper, J. D.; Reibenspies, J. H.
J. Am. Chem. Soc. 1998, 120, 4690-4698. (b) Cohen, C. T.; Chu, T.;
Coates, G. W. J. Am. Chem. Soc. 2005, 127, 10869-10878. (c) Aida, T.;
Inoue, S. Acc. Chem. Res. 1996, 29, 39-48.
(6) (a) Ojima, I. In The Chemistry of Organic Silicon Compounds; Patai, S.,
Rappoport, Z., Eds.; Wiley: New York, 1989. (b) Marciniec, B.
ComprehensiVe Handbook on Hydrosilation; Pergamon: New York, 1992.
(7) (a) Jansen, A.; Pitter, S. J. Mol. Catal. A: Chem. 2004, 217, 41-45. (b)
Eisenschmid, T. C.; Eisenberg, R.; Organometallics 1989, 8, 1822-1824.
(c) Su¨ss-Fink, G.; Reiner, J. J. Organomet. Chem. 1981, 221, C36-C38.
(d) Koinuma, H.; Kawakami, F.; Kato, H.; Hirai, H. J. Chem. Soc., Chem.
Commun. 1981, 213-214.
(8) Reference 7a reported that the reaction of CO2 with Et3SiH using a catalytic
amount of RuCl3‚nH2O produced (Et3Si)2O, but formation of CH4 was
not confirmed.
(9) (a) Latesky, S. L.; McMullen, A. K.; Niccolai, G. P.; Rothwell, I. P.
Organometallics 1985, 4, 902-908. (b) Thorn, M. G.; Etheridge, Z. C.;
Fanwick, P. E.; Rothwell, I. P. Organometallics 1998, 17, 3636-3638.
(10) Hill, M.; Wendt, O. F. Organometallics 2005, 24, 5772-5575.
(11) (a) Parks, D. J.; Piers, W. E. J. Am. Chem. Soc. 1996, 118, 9440-9441.
(b) Gevorgyan, V.; Rubin, M.; Benson, S.; Liu, J.-X.; Yamamoto, Y. J.
Org. Chem. 2000, 65, 6179-6186.
)
n
a The Zr/B ratio ) ca. 1, except for entries 2 (0.69) and 3 (1.96) (0.41
to ∼0.52 mol % (L3)Zr(CH2Ph)2/B(C6F5)3 except for entry 4 (1.8 mol %)).
b TON and TOF are based on the zirconium complex per Si-H bond.
c Isolated yields of siloxane.
Scheme 1
of cyclic and linear siolxane oligomers (Et2SiO)n (n ) 3-11, entry
5), and phenylsilane was transformed into a silsequioxane polymer
(PhSiO1.5)n (Mw ) 4220, Mw/Mn ) 2.72, entry 7). This result implies
the possibility to prepare polysiloxane materials from hydrosilanes
and CO2. However, when diphenylsilane was used, the formation
of (Ph2HSi)2O remarkably reduced the reactivity of its remaining
Si-H bonds (entry 6).
A detailed mechanism for the overall catalytic process cannot
yet be deduced, but an outline of a potential mechanism is provided
in Scheme 1. First, the zirconium cationic complex forms the adduct
with CO2, because of the highly electrophilic character of the
phenoxide-supported zirconium(IV) cationic species.10 In the
absence of zirconium complexes, reduction of CO2 is not observed,
suggesting coordination of CO2 to the Zr center prior to the actual
reduction. This coordination might render the CO2 reactive toward
hydrosilation to yield the initial product CH2(OSiR3)2. The nature
of the counteranion is critical, because replacing [PhCH2B(C6F5)3]-
with [B(C6F5)4]- resulted in disproportionation of hydrosilane (entry
JA0647250
9
J. AM. CHEM. SOC. VOL. 128, NO. 38, 2006 12363