Full Paper
compound was formed in small amounts (3 and 6 %, respective-
ly).
[5] a) Union Carbide Co., US Pat, 2606811, 1952; b) Dow Corning Co., US
Pat. 3639105, 1972; c) Rhodia Chimie, FR 99/00771, 1999; d) Dow Corn-
ing Co., US Pat. 6013235, 2000; e) Wacker Chemie AG, DE
(
c) A mixture of [Pt(SiPh H) (dppf)] (2) (2.4 mg, 2 μmol) and HPh Si-
2
2
2
1
02007055732A1, 2008.
SiPh H (26.3 mg, 72 μmol) in C D (0.5 mL) in a NMR pressure tube
2
6 6
[
[
6] R. Calas, G. Deleris, J. Dunogues, M. Lefort, C. Simmonet, J. Organomet.
Chem. 1978, 148, 119–125.
7] a) L. Rosenberg, C. W. Davis, J. Yao, J. Am. Chem. Soc. 2001, 123, 5120–
5121; b) D. Schmidt, T. Zell, T. Schaub, U. Radius, Dalton Trans. 2014, 43,
10816–10827.
was cooled to 77 K, degassed, and pressurized with H to 1.7 bar.
2
1
13
The solution was heated to 313 K and analyzed by H and C NMR
spectroscopy. The data revealed the conversion of HPh SiSiPh H
2
2
into H SiPh was 24 % after 20 h, 44 % after 2 d, and 52 % after 3 d
2
2
1
(
according to the H NMR spectroscopic analysis). In addition, an
unidentified compound was formed in small amounts (1, 3, and
%, respectively).
[
8] Examples of stoichiometric Si–H and Si–Si activation reactions at plati-
num: a) C. Eaborn, A. Pidcock, B. Ratcliff, J. Organomet. Chem. 1972, 43,
C2–C4; b) C. Eaborn, B. Ratcliff, A. Pidcock, J. Organomet. Chem. 1974,
3
6
1
5, 181–186; c) T. Koizumi, K. Osakada, T. Yamamoto, Organometallics
997, 16, 6014–6016; d) Y.-J. Kim, J.-I. Park, S.-C. Lee, K. Osakada, M.
Catalytic Formation of H SiMe2 by Reaction of HMe SiSiMe H
2
2
2
with H in the Presence of [Pt(SiMe H) (dppf)] (4): A mixture of
2
2
2
Tanabe, J.-C. Choi, T. Koizumi, T. Yamamoto, Organometallics 1999, 18,
1349–1352; e) Y. Levchinsky, N. P. Rath, J. Braddock-Wilking, Organome-
tallics 1999, 18, 2583–2586; f) L. M. Sanow, M. Chai, D. B. McConnville,
K. J. Galat, R. S. Simons, P. L. Rinaldi, W. J. Youngs, C. A. Tessier, Organome-
tallics 2000, 19, 192–205; g) D. Chan, S. B. Duckett, S. L. Heath, I. G.
Khazal, R. N. Perutz, S. Sabo-Etienne, P. L. Timmins, Organometallics 2004,
[
Pt(SiMe H) (dppf)] (4) (5.1 mg, 6 μmol) and HMe SiSiMe H (9.5 mL,
2 2 2 2
5
8 μmol) in C D6 [0.5 mL; containing toluene (5 μL) as external
6
standard] in a NMR pressure tube was cooled to 77 K, degassed,
1
13
and pressurized with H to 1.7 bar. The H and C NMR spectro-
2
scopic data revealed the consumption of HMe SiSiMe H was 76 %
2
2
2
3, 5744–5756; h) J. Braddock-Wilking, J. Y. Corey, K. A. Trankler, H. Xu,
after 20 h and 94 % after 2 d at room temperature in the absence
of light, as well as the formation of H SiMe . The reaction solution
L. M. French, N. Praingam, C. White, N. P. Rath, Organometallics 2006, 25,
2
8
bayashi, T. Hayashi, M. Tanaka, Chem. Lett. 1990, 1447–1450; k) H. Yama-
shita, M. Tanaka, M. Goto, Organometallics 1992, 11, 3227–3232; l) E. K.
Pham, R. West, J. Am. Chem. Soc. 1989, 111, 7667–7668; m) E. K. Pham,
R. West, Organometallics 1990, 9, 1517–1523; n) M. J. Michalczyk, J. C.
Calabrese, C. A. Recatto, M. J. Fink, J. Am. Chem. Soc. 1992, 114, 7955–
2
2
859–2871; i) C. Mitzenheim, T. Braun, Angew. Chem. Int. Ed. 2013, 52,
625–8628; Angew. Chem. 2013, 125, 8787–8790; j) H. Yamashita, T. Ko-
contained dissolved H SiMe in a yield of 45 or 65 %, respectively
2
2
(
according to the 1H NMR spectroscopic analysis). In addition, an
unidentified compound was formed in small amounts (2 % after
d).
2
Structure Determination of the Complexes 1, 2, and 3: Crystals
of 1–3 precipitated from reaction solutions in C D at room temp.
6
6
7
5
1
957; o) Y. Tanaka, H. Yamashita, M. Tanaka, Organometallics 1995, 14,
30–541; p) M. Suginome, H. Oike, P. H. Shuff, Y. Ito, J. Organomet. Chem.
996, 521, 405–408; q) Y.-J. Lee, J.-D. Lee, S.-J. Kim, B. W. Yoo, J. Ko, I.-H.
Crystallographic data are depicted in Table 3. Data collections were
performed with a Bruker D8 VENTURE area detector, Mo-Kα radia-
tion (λ = 0.71073 Å). Multi-scan absorption corrections imple-
Suh, M. Cheong, S. O. Kang, Organometallics 2004, 23, 490–497; r) H. Arii,
M. Takahashi, A. Noda, M. Nanjo, K. Mochida, Organometallics 2008, 27,
1929–1935; s) H. Arii, M. Takahashi, M. Nanjo, K. Mochida, Organometal-
lics 2009, 28, 4629–4631; t) H. Arii, M. Takahashi, M. Nanjo, K. Mochida,
Dalton Trans. 2010, 39, 6434–6440; u) T. Ahrens, T. Braun, B. Braun, Z.
Anorg. Allg. Chem. 2014, 640, 93–99.
mented in SADABS[ (complex 1 and 3) or PLATON (complex 2)
were applied to the data. The structures were solved by intrinsic
phasing method (SHELXT-2013) and refined by full-matrix least
28]
[29]
2
square procedures based on F with all measured reflections
(
SHELXL-2013) with anisotropic temperature factors for all non-
[30]
[9] A. Roscher, A. Bockholt, T. Braun, Dalton Trans. 2009, 1378–1382.
10] J. Voigt, T. Braun, Dalton Trans. 2011, 40, 12699–12704.
11] J. Voigt, M. A. Chilleck, T. Braun, Dalton Trans. 2013, 42, 4052–4058.
12] J. Voigt, Dissertation, Humboldt-Universität zu Berlin, Berlin, 2013.
hydrogen atoms.
All non-metal-bonded hydrogen atoms were
[
[
[
[
added geometrically and refined by using a riding model.
CCDC 1419468 (for 1), 1419469 (for 2), and 1419470 (for 3) contain
13] a) P. W. N. M. van Leeuwen, P. C. J. Kamer, J. N. H. Reek, P. Dierkes,
Chem. Rev. 2000, 100, 2741–2770; b) M.-N. Birkholz, Z. Freixa, P. W. N. M.
van Leeuwen, Chem. Soc. Rev. 2009, 38, 1099–1118; c) J. A. Gillespie, D. L.
Dodds, P. C. J. Kamer, Dalton Trans. 2010, 39, 2751–2764; d) S. W. Chien,
T. S. A. Hor, in: Ferrocenes Ligands, Mater. Biomol. (Ed.: P. Štěpnička), John
Wiley & Sons, Chichester, UK, 2008, p. 33–116; e) K.-S. Gan, T. S. A. Hor,
in: Ferrocene (Eds.: A. Togni, T. Hayashi), VCH Publishers, New York, 1995,
p. 3–104.
14] a) C. P. Casey, G. T. Whiteker, Isr. J. Chem. 1990, 30, 299–304; b) P. Dierkes,
P. W. N. M. van Leeuwen, J. Chem. Soc., Dalton Trans. 1999, 1519–1530.
15] a) G. Bandoli, A. Dolmella, Coord. Chem. Rev. 2000, 209, 161–196; b) S. A.
Al-Jibori, A. I. A. Al-Nassiry, G. Hogarth, L. Salassa, Inorg. Chim. Acta 2013,
Acknowledgments
The authors acknowledge the financial support by the Deut-
sche Forschungsgemeinschaft (DFG).
[
Keywords: Platinum · Silicon · Si–Si activation · Si–H
activation · Hydrogenolysis
[
3
98, 46–53.
[
16] A. E. Gerbase, E. J. S. Vichi, E. Stein, L. Amaral, A. Vasquez, M. Hörner, C.
Maichle-Mössmer, Inorg. Chim. Acta 1997, 266, 19–27.
17] a) B. Corain, B. Longato, G. Favero, D. Ajò, G. Pilloni, U. Russo, F. R. Kreissl,
Inorg. Chim. Acta 1989, 157, 259–266; b) C. Nataro, A. N. Campbell, M. A.
Ferguson, C. D. Incarvito, A. L. Rheingold, J. Organomet. Chem. 2003, 673,
[
[
[
1] a) J. Y. Corey, Chem. Rev. 2011, 111, 863–1071; b) H. K. Sharma, K. H.
Pannell, Chem. Rev. 1995, 95, 1351–1374.
2] a) A. J. Chalk, J. F. Harrod, J. Am. Chem. Soc. 1965, 87, 16–21; b) F. Ozawa,
J. Organomet. Chem. 2000, 611, 332–342.
3] a) M. Suginome, Y. Ito, Chem. Rev. 2000, 100, 3221–3256; b) T. Hayashi,
T. Kobayashi, A. M. Kawamoto, H. Yamashita, M. Tanaka, Organometallics
[
4
2
7–55; c) A. C. Ohs, A. L. Rheingold, M. J. Shaw, C. Nataro, Organometallics
004, 23, 4655–4660; d) S. L. Martinak, L. A. Sites, S. J. Kolb, K. M. Bocage,
1990, 9, 280–281.
W. R. McNamara, A. L. Rheingold, J. A. Golen, C. Nataro, J. Organomet.
Chem. 2006, 691, 3627–3632.
[
4] a) I. Ojima, S.-I. Inaba, T. Kogure, Y. Nagai, J. Organomet. Chem. 1973, 55,
C7–C8; b) L. S. Chang, M. P. Johnson, M. J. Fink, Organometallics 1989, 8,
1369–1371; c) J. F. Harrod, Y. Mu, E. Samuel, Polyhedron 1991, 10, 1239–
1245; d) H. G. Woo, J. F. Walzer, T. D. Tilley, J. Am. Chem. Soc. 1992, 114,
7047–7055; e) B. J. Grimmond, J. Y. Corey, Inorg. Chim. Acta 2002, 330,
89–94; f) J. Y. Corey, Adv. Organomet. Chem., vol. 51, Elsevier, 2004.
[18] a) J. M. Brown, N. A. Cooley, D. W. Price, J. Chem. Soc., Chem. Commun.
1989, 458–460; b) D. K. Wicht, M. A. Zhuravel, R. V. Gregush, D. S. Glueck,
I. A. Guzei, L. M. Liable-Sands, A. L. Rheingold, Organometallics 1998, 17,
1412–1419.
Eur. J. Inorg. Chem. 2016, 530–537
www.eurjic.org
536
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim