Organic Letters
3% yield through the initial multicomponent attachment of
Letter
5
(4) Macrocyclizations under pseudo-dilution conditions comprise the
use of syringe pumps; see, for example: (a) Malesevic, M.; Strijowski, U.;
Fmoc-Phe-OH and ethyl isocyanoacetate to the resin, followed
by peptide growing using the Fmoc strategy and consecutive
macrocyclization and acidic cleavage from resin. In summary, this
new multicomponent BAL strategy can be considered as a
valuable and efficient improvement in peptide synthesis. Several
factors such as the low synthetic cost for incorporating the first
three or four amino acids into the resin, the great tolerance of
protecting groups, and the complete absence of DKP formation,
among others, make it a plausible alternative to classic BAL
approaches. It is especially valuable for cyclic peptides having at
least one Gly or Aib residue or for the construction of D/L
peptide library including natural and non-natural amino acids, as
higher aldehydes can be used leading to the two diastereomers.
In conclusion, we have developed an efficient strategy to assist
peptide macrocyclization both in solution and on the solid phase.
The approach uses the versatile Ugi-4CR for the ligation of
peptides and the simultaneous incorporation of a removable N-
alkyl substituent that serves as a turn-inducing moiety and
facilitates the macrocyclic ring closure. Its assistance to the
macrocyclization was proven with a variety of tetra- to
heptapeptides. An extension of this concept to the solid phase
led to the development of a new BAL strategy, relying for the first
time on the multicomponent incorporation of at least three
amino acids in one step instead of the three on-resin steps
required in traditional BAL protocols for attaching a dipeptide
fragment. Owing to its synthetic prospects, this concept can be
very useful for the peptide, combinatorial, and medicinal
chemistry communities.
Bac
A.; Kreye, O.; Rivera, D. G. Angew. Chem., Int. Ed. 2017, 56, 3501.
5) (a) Chatterjee, J.; Mierke, D. F.; Kessler, H. Chem. - Eur. J. 2008, 14,
508. (b) Favre, M.; Moehle, K.; Jiang, L.; Pfeiffer, B.; Robinson, J. A. J.
Am. Chem. Soc. 1999, 121, 2679. (c) Takeuchi, Y.; Marshall, G. R. J. Am.
Chem. Soc. 1998, 120, 5363. (d) Rothe, M.; Steffen, K.-D.; Rothe, I.
Angew. Chem., Int. Ed. Engl. 1965, 4, 356.
(6) (a) Kessler, H.; Haase, B. Int. J. Pept. Protein Res. 1992, 39, 36.
(b) Yongye, A. B.; Li, Y.; Giulianotti, M. A.; Yu, Y.; Houghten, R. A.;
Martínez-Mayorga, K. J. Comput.-Aided Mol. Des. 2009, 23, 677.
̈
hle, D.; Sewald, N. J. Biotechnol. 2004, 112, 73. (b) Wessjohann, L.
(
1
̈
(7) (a) Dumy, P.; Keller, M.; Ryan, D. E.; Rohwedder, B.; Wohr, T.;
Mutter, M. J. Am. Chem. Soc. 1997, 119, 918. (b) Skropeta, D.; Jolliffe, K.
A.; Turner, P. J. Org. Chem. 2004, 69, 8804. (c) Sayyadi, N.; Skropeta,
D.; Jolliffe, K. A. Org. Lett. 2005, 7, 5497. (d) Fairweather, K. A.; Sayyadi,
N.; Luck, I. J.; Clegg, J. K.; Jolliffe, K. A. Org. Lett. 2010, 12, 3136.
(
8) Meutermans, W. D. F.; Bourne, G. T.; Golding, S. W.; Horton, D.
A.; Campitelli, M. R.; Craik, D.; Scanlon, M.; Smythe, M. L. Org. Lett.
003, 5, 2711.
2
(9) (a) El Haddadi, M.; Cavelier, F.; Vives, E.; Azmani, A.; Verducci, J.;
Martinez, J. J. Pept. Sci. 2000, 6, 560. (b) van Maarseveen, J. H.; Horne,
W. S.; Ghadiri, M. R. Org. Lett. 2005, 7, 4503.
(
10) Cavelier-Frontin, F.; Achmad, S.; Verducci, J.; Jacquier, R.; Pepe,
G. J. Mol. Struct.: THEOCHEM 1993, 286, 125.
11) Le, D. N.; Riedel, J.; Kozlyuk, N.; Martin, R. W.; Dong, V. M. Org.
Lett. 2017, 19, 114.
12) (a) Rivera, D. G.; Vasco, A. V.; Echemendía, R.; Concepcion
Perez, C. S.; Gavín, J. A.; Wessjohann, L. A. Chem. - Eur. J. 2014, 20,
3150. (b) Barreto, A. F. S.; Vercillo, O. E.; Birkett, M. A.; Caulfield, J.
(
(
́
, O.;
́
1
C.; Wessjohann, L. A.; Andrade, C. K. Z. Org. Biomol. Chem. 2011, 9,
5024. (c) Vercillo, O. E.; Andrade, C. K. Z.; Wessjohann, L. A. Org. Lett.
2
008, 10, 205.
ASSOCIATED CONTENT
Supporting Information
(13) For the use of DMB amine in Ugi reactions, see: (a) Shaw, A. Y.;
Xu, Z.; Hulme, C. Tetrahedron Lett. 2012, 53, 1998. (b) Plant, A.;
Thompson, P.; Williams, D. M. J. Org. Chem. 2009, 74, 4870.
(14) T3P is a registered trademark. Original report: (a) Wissmann, H.;
Kleiner, H.-J. Angew. Chem., Int. Ed. Engl. 1980, 19, 133. (b) Review:
Llanes García, A. L. Synlett 2007, 2007, 1328.
■
*
S
Experimental procedures, NMR, and ESI-MS spectra of
selected intermediates and final cyclic peptides (PDF)
(15) Sung, K.; Chen, F.-L.; Huang, P.-C. Synlett 2006, 2006, 2667.
(16) Zhdanko, A. G.; Nenajdenko, V. G. J. Org. Chem. 2009, 74, 884.
(17) (a) de Leon Rodriguez, L.; Weidkamp, A. J.; Brimble, M. A. Org.
AUTHOR INFORMATION
Biomol. Chem. 2015, 13, 6906. (b) Alcaro, M. C.; Sabatino, G.; Uziel, J.;
Chelli, M.; Ginanneschi, M.; Rovero, P.; Papini, A. J. Pept. Sci. 2004, 10,
■
*
*
2
18. (c) Alsina, J.; Rabanal, F.; Giralt, E.; Albericio, F. Tetrahedron Lett.
1994, 35, 9633. (d) Kates, S. A.; Sole, N. A. Tetrahedron Lett. 1993, 34,
́
1549. (e) Mazur, S.; Jayalekshmy, P. J. Am. Chem. Soc. 1979, 101, 677.
(18) (a) Jensen, K. J.; Songster, M. F.; Vagner, J.; Alsina, J.; Albericio,
ORCID
F.; Barany, G. In Peptides − Chemistry, Structure and Biology: Proceedings
of the Fourteenth American Peptide Symposium (1995); Kaumaya, P. T. P.,
Hodges, R. S., Eds.; Mayflower Scientific: Kingswinford, U.K., 1996; pp
Author Contributions
3
0−32. (b) Jensen, K. J.; Alsina, J.; Songster, M. F.; Vagner, J.; Albericio,
§
A.R.P. and M.C.M. contributed equally.
F.; Barany, G. J. Am. Chem. Soc. 1998, 120, 5441. (c) Alsina, J.; Yokum,
T. S.; Albericio, F.; Barany, G. J. Org. Chem. 1999, 64, 8761.
Notes
(
19) (a) Boojamra, C. G.; Burow, K. M.; Ellman, J. A. J. Org. Chem.
995, 60, 5742. (b) Boojamra, C. G.; Burow, K. M.; Thompson, L. A.;
Ellman, J. A. J. Org. Chem. 1997, 62, 1240.
(20) For reviews, see: (a) Gongora-Benítez, M.; Tulla-Puche, J.;
The authors declare no competing financial interest.
1
ACKNOWLEDGMENTS
D.G.R. is grateful to the Alexander von Humboldt Foundation
for an Experienced Researcher Fellowship.
■
́
Albericio, F. ACS Comb. Sci. 2013, 15, 217. (b) Boas, U.; Brask, J.;
Jensen, K. J. Chem. Rev. 2009, 109, 2092. (c) Alsina, J.; Jensen, K. J.;
Albericio, F.; Barany, G. Chem. - Eur. J. 1999, 5, 2787.
(
21) (a) Morales, F. E.; Garay, H. E.; Mun
Otero-Gonzalez, A. J.; Reyes Acosta, O.; Rivera, D. G. Org. Lett. 2015,
7, 2728. (b) Morejon, M. C.; Laub, A.; Westermann, B.; Rivera, D. G.;
Wessjohann, L. A. Org. Lett. 2016, 18, 4096.
22) Jia, A. Q.; Tan, N. H.; Yongping, Y.; Wu, S. G.; Wang, L. Q.; Zhou,
J. Act. Bot. Sin. 2004, 46, 625−630.
̃
oz, D. F.; Augusto, Y. E.;
REFERENCES
■
(
1) (a) White, C. J.; Yudin, A. K. Nat. Chem. 2011, 3, 509. (b) Lambert,
J. N.; Mitchell, J. P.; Roberts, K. D. J. Chem. Soc. Perkin Trans. 1 2001,
1
́
4
(
(
71.
2) (a) El-Faham, A.; Albericio, F. Chem. Rev. 2011, 111, 6557.
b) Montalbetti, C. A. G. N.; Falque, V. Tetrahedron 2005, 61, 10827.
3) (a) Davies, J. S. J. Pept. Sci. 2003, 9, 471. (b) Humphrey, J. M.;
Chamberlin, A. R. Chem. Rev. 1997, 97, 2243.
(
(
D
Org. Lett. XXXX, XXX, XXX−XXX