H. Hanaki et al. / Tetrahedron Letters 45 (2004) 5791–5793
5793
3. Murray, R. W.; Jeyaraman, R. J. Org. Chem. 1985, 50,
2847.
O - Transfer
(2a)
(2b)
_
O
O
O
+
Ar2C
6b
Ar2C = O
4. (a) Murray, R. W. Chem. Rev. 1989, 89, 1187; (b) Adam,
W.; Curci, R.; Edwords, J. O. Acc. Chem. Res. 1989, 22,
205; (c) Adam, W.; Hajiiarapoglou, L. P.; Curci, R.;
Mello, R. In Organic Peroxides; Ando, W., Ed.; Wiley:
New York, 1992; p 195.
5. (a) Yamaguti, K.; Takada, K.; Otsuji, Y.; Mizuno, K. In
Organic Peroxides; Ando, W., Ed.; Wiley: New York,
1992; p 1; (b) Ishiguro, K.; Nojima, T.; Sawaki, Y. J. Phys.
Org. Chem. 1997, 10, 787; (c) Ishiguro, K.; Sawaki, Y.
Bull. Chem. Soc. Jpn. 2000, 73, 535.
OOH
OMe
Ar2 C
MeOH
5b
7b
methanol (Eq. 2b). The latter reaction is speculated to
be facile since the ring-opening reaction of 6b is facili-
tated by the release of three-membered ring strain, by
the hydrogen bonding between the ring oxygen and
MeOH, and by the stabilization of carbocation by
p-anisyl group. An attempted detection of 6b by 13C
NMR method was unsuccessful, which means that the
lifetime of 6b is not enough to be detected.
6. Sawaki, Y.; Kato, H.; Ogata, Y. J. Am. Chem. Soc. 1981,
103, 3832.
7. (a) Sander, W.; Schroeder, K.; Muthusamy, S.; Kirschfeld,
A.; Kappert, W.; Boese, R.; Kraka, E.; Sosa, C.; Cremer,
D. J. Am. Chem. Soc. 1997, 119, 7265; (b) Sander, W.;
Block, K.; Kappert, W.; Kirschfeld, A.; Muthusamy, S.;
Schroeder, K.; Sosa, C. P.; Kraka, E.; Cremer, D. J. Am.
Chem. Soc. 2001, 123, 2618.
8. Kopecky, K. R.; Xie, Y.; Molina, J. Can. J. Chem. 1993,
71, 272.
9. Ishiguro, K.; Hirabayashi, K.; Nojima, T.; Sawaki, Y.
Chem. Lett. 2002, 796.
10. Platz, M. S.; Maloney, V. M. In Kinetics and Spectroscopy
of Carbenes and Biradicals; Platz, M. S., Ed.; Plenum: New
York, 1990; p 250.
11. (a) Casal, H. L.; Sugamori, S. E.; Scaiano, J. C. J. Am.
Chem. Soc. 1984, 106, 7623; (b) Casal, H. L.; Tanner, M.;
Werstiuk, N. H.; Scaiano, J. C. J. Am. Chem. Soc. 1985,
107, 4616; (c) Scaiano, J. C.; McGimpsey, W. G.; Casal,
H. L. J. Org. Chem. 1989, 54, 1612.
The thermal isomerization of CO’s to more stable DO’s
is known not to occur because of the high cyclization
energy of >80 kJ molꢀ1 and hence the two active oxygen
species are regarded as the separate intermediates.2;4;5
A
few exceptional cases are CO’s with a-methoxyl8 and
a-amino substituents,9 where the products analysis
indicated the cyclization to DO’s. The present study on
the trapping and laser-flash experiments reveals clearly
that the cyclization of diaryl CO’s becomes facile by
substituting the resonance-stabilizing group. The acti-
vation enthalpy for the isomerization of CO (8) to DO
(10) was analyzed by a DFT/PM3 method.19 Since the
anisyl group is too big for the calculation, CO’s with a-
MeO group were analyzed (Eq. 3, R1 and/or R2 ¼ MeO).
12. (a) Makihara, T.; Nojima, T.; Ishiguro, K.; Sawaki, Y.
Tetrahedron Lett. 2003, 44, 865; (b) Hanaki, H.; Fukatsu,
Y.; Harada, M.; Sawaki, Y. Tetrahedron Lett. 2004, 45,
2559.
13. Acetonitrile solutions of Ar2CN2 (0.1–0.2 mM) were
irradiated at 308 nm with an Eximer laser. Nano second
laser-flash spectroscopy was carried out as described
previously: (a) Nojima, T.; Ishiguro, K.; Sawaki, Y. J.
Org. Chem. 1997, 62, 6911; (b) Yokoi, H.; Nakano, T.;
Fujita, W.; Ishiguro, K.; Sawaki, Y. J. Am. Chem. Soc.
1998, 120, 12453.
14. Oxygen concentrations in acetonitrile are 9.1 and 1.9 mM
under oxygen and air, respectively: Murov, S. L.; Carmi-
chael, I.; Hug, G. L. Handbook of Photochemistry; Marcel
Dekker: New York, 1993; p 289.
15. Diazomethane 3b was prepared from the corresponding
hydrazone: Smith, L. I.; Howard, K. L. Organic Syntheses;
Wiley: New York, 1955; Collect. Vol. III, p 351.
16. (a) Murray, R. W.; Jeyaraman, R.; Pillay, M. K. J. Org.
Chem. 1987, 52, 746; (b) Adam, W.; Chan, Y.-Y.; Cremer,
D.; Gauss, J.; Scheutzow, D.; Schindler, M. J. Org. Chem.
1987, 52, 2800.
O
_
O
O
O
R
R
1
1
+
R
R
1
C
C
O
C = O
ð3Þ
R
2
R
2
2
8
9
10
The activation enthalpy (DH#) of 64.8 kJ molꢀ1 for the
parent CO (8a, R1 ¼ R2 ¼ H) was decreased down to
48.5 for anti-MeO (8b, R1 ¼ H, R2 ¼ MeO) and to only
8.0 kJ molꢀ1 for dimethoxyl CO (8c, R1 ¼ R2 ¼ MeO). A
small decrease in DH# (i.e., 31.8 kJ molꢀ1) was obtained
for the CO with R1 ¼ MeO and R2 ¼ F, but not for other
cases of dichloro- or difluoro CO (55.6 kJ molꢀ1). These
results indicate that the corporative interaction of two
resonance-stabilizing groups is important to reduce the
relative enthalpy of transition state 9, that is, the acti-
vation energy for the cyclization. In other words, the
introduction of two MeO groups is to increase
the importance of 1b with C–O single bond leading to
the facile cyclization to DO’s.
17. Acetonitrile solution of 3.8 mM 3b and 0.3 mM Rose
Bengal was irradiated at >400 nm (Hg lamp) in the
presence of 2.5 M MeOH under oxygen. Products were
extracted from the mixture with water, affording 7b
(Ar ¼ p-MeOC6H4) in 35% yield as analyzed by 1H
NMR (200 MHz, CDCl3) d 3.34 (3H, s), 3.78 (6H, s),
6.9–7.3 (8H, m).
In conclusion, it is shown that the reactivity of CO
intermediates is controlled and turned by the resonance-
stabilizing donor substituent.
References and notes
18. (a) McClelland, R. A. In Organic Reactivity: Physical and
Biological Aspects; Golding, B. T., Griffin, R. J., Maskill,
H., Eds.; Royal Soc. Chem.: Cambridge, 1995; p 301; (b)
Minegishi, S.; Mayer, H. J. Am. Chem. Soc. 2003, 125,
286.
19. A DFT calculation: pBP/DNꢃꢃ/PM3 (Spartan). Spartan
package: MacSpartan Plus 2.0, Wavefunction, Irvine, CA
92612.
1. Bailey, P. S. In Ozonation in Organic Chemistry; Aca-
demic: New York, Vol. 1, 1978; Vol. 2, 1982.
2. (a) Sander, W. Angew. Chem., Int. Ed. Engl. 1990, 29, 344;
(b) Bunnelle, W. H. Chem. Rev. 1991, 91, 335; (c)
McCullough, K. J.; Nojima, M. In Organic Peroxides;
Ando, W., Ed.; Wiley: New York, 1992; p 661.