Organic Letters
Letter
(4) (a) Kawabata, T.; Nagato, M.; Takasu, K.; Fuji, K. J. Am. Chem. Soc.
1997, 119, 3169. (b) Ruble, J. C.; Latham, H. A.; Fu, G. C. J. Am. Chem.
Soc. 1997, 119, 1492. (c) Vedejs, E.; Chen, X. J. Am. Chem. Soc. 1997,
119, 2584. (d) Ruble, J. C.; Tweddell, J.; Fu, G. C. J. Org. Chem. 1998, 63,
2794. (e) Tao, B.; Ruble, J. C.; Hoic, D. A.; Fu, G. C. J. Am. Chem. Soc.
1999, 121, 5091. (f) Bellemin-Laponnaz, S.; Tweddell, J.; Ruble, J. C.;
Breitling, F. M.; Fu, G. C. Chem. Commun. 2000, 1009. (g) Naraku, G.;
Shimomoto, N.; Hanamoto, T.; Inanaga, J. Enantiomer 2000, 5, 135.
(h) Kawabata, T.; Yamamoto, K.; Momose, Y.; Yoshida, H.; Nagaoka,
Y.; Fuji, K. Chem. Commun. 2001, 2700. (i) Vedejs, E.; MacKay, J. A. Org.
Lett. 2001, 3, 535. (j) Dalaigh, C. O.; Hynes, S. J.; Maher, D. J.; Connon,
S. J. Org. Biomol. Chem. 2005, 3, 981. (k) Yamada, S.; Misono, T.; Iwai, Y.
Tetrahedron Lett. 2005, 46, 2239. (l) Duffey, T. A.; MacKay, J. A.; Vedejs,
E. J. Org. Chem. 2010, 75, 4674.
Single-point energy calculations with the self-consistent
reaction field (SCRF) calculation based on the polarizable
continuum model (CPCM, THF) were carried out at the 6-
311+g** level for both cases. The gap in relative energies
between the two transition states was ΔG = 2.99 kcal/mol (ΔE =
1.83 kcal/mol), which is consistent with the experimental
enantioselectivity of 3c using 1a (99:1 er). In both TS structures,
the enolate fragment (CC−O−) in II and the reactive carbonyl
group in I are oriented in an anti-conformation (Figure 3). In the
case of TsR(COA_CCO), a phenylene group of II is located
close to the t-Bu group of the catalyst, which would cause
destabilization. In contrast, the tert-butyl group of the catalyst in
TsS(COA_CCO) is far from an adjacent group (Bn) of II. We
could not obtain any evidence of positive interaction (e.g.,
cation−π) in these transition states.
(5) (a) Arai, S.; Bellemin-Laponnaz, S.; Fu, G. C. Angew. Chem., Int. Ed.
2001, 40, 234. (b) Arp, F. O.; Fu, G. C. J. Am. Chem. Soc. 2006, 128,
14264.
In conclusion, we have developed an enantioselective Steglich
rearrangement of O-acylated oxindoles to give the desired
products possessing a quaternary stereogenic center in >98%
yield with up to 99:1 er. The reaction proceeded smoothly in the
presence of 10 mol % of 1a or 1c, which can be readily prepared
by the diastereoselective Ugi reaction in a one-step and one-pot
manner. Such easy-to-prepare catalysts in the enantioselective
Steglich rearrangement of O-acylated oxindole derivatives have
not been reported previously. The application of such a catalyst
scaffold to other important classes of enantioselective trans-
formations is now underway.
(6) (a) Spivey, A. C.; Zhu, F.; Mitchell, M. B.; Davey, S. G.; Jarvest, R.
L. J. Org. Chem. 2003, 68, 7379. (b) Schedel, H.; Kan, K.; Ueda, Y.;
Mishiro, K.; Yoshida, K.; Furuta, T.; Kawabata, T. Beilstein J. Org. Chem.
2012, 8, 1778.
(7) (a) Ruble, J. C.; Fu, G. C. J. Am. Chem. Soc. 1998, 120, 11532.
(b) Hills, I. D.; Fu, G. C. Angew. Chem., Int. Ed. 2003, 42, 3921. (c) Shaw,
S. A.; Aleman, P.; Vedejs, E. J. Am. Chem. Soc. 2003, 125, 13368.
(d) Shaw, S. A.; Aleman, P.; Christy, J.; Kampf, J. W.; Va, P.; Vedejs, E. J.
Am. Chem. Soc. 2006, 128, 925.
(8) Initial report on peptide-based organocatalyst: Miller, S. J.;
Copeland, G. T.; Papaioannou, N.; Horstmann, T. E.; Ruel, E. M. J. Am.
Chem. Soc. 1998, 120, 1629.
(9) For a review on synthetic peptides in asymmetric catalysis see:
Davie, E. A. C.; Mennen, S. M.; Xu, Y.; Miller, S. J. Chem. Rev. 2007, 107,
5759.
(10) Mandai, H.; Irie, S.; Mitsudo, K.; Suga, S. Molecules 2011, 16,
8815.
(11) Mandai, H.; Irie, S.; Akehi, M.; Yuri, K.; Yoden, M.; Mitsudo, K.;
Suga, S. Heterocycles 2013, 87, 329.
(12) Initial report on Steglich rearrangement with achiral DMAP, see:
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Experimental procedures and copies of 1H and 13C NMR
spectra for substrates and products (PDF)
Steglich, W.; Hofle, G. Angew. Chem., Int. Ed. Engl. 1969, 8, 981.
̈
(13) We also investigated the effect of catalyst loading, and found that
10 mol % catalyst was required for full conversion within 12 h.
(14) Joannesse, C.; Johnston, C. P.; Morrill, L. C.; Woods, P. A.;
Kieffer, M.; Nigst, T. A.; Mayr, H.; Lebl, T.; Philp, D.; Bragg, R. A.;
Smith, A. D. Chem. - Eur. J. 2012, 18, 2398.
AUTHOR INFORMATION
Corresponding Authors
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This research was partially supported by a Grant-in-Aid for
Scientific Research on Innovative Areas “Advanced Molecular
Transformations by Organocatalysts” from MEXT (Japan). The
authors gratefully thank the Division of Instrumental Analysis,
Department of Instrumental Analysis & Cryogenics, Advanced
Science Research Center, Okayama University, for NMR and
high-resolution mass spectrometry measurements (FAB).
REFERENCES
■
(1) (a) France, S.; Guerin, D. J.; Miller, S. J.; Lectka, T. Chem. Rev.
2003, 103, 2985. (b) Robinson, D. E. J. E.; Bull, S. D. Tetrahedron:
Asymmetry 2003, 14, 1407. (c) Fu, G. C. Acc. Chem. Res. 2004, 37, 542.
(d) Vedejs, E.; Jure, M. Angew. Chem., Int. Ed. 2005, 44, 3974. (e) Wurz,
R. P. Chem. Rev. 2007, 107, 5570. (f) Muller, C. E.; Schreiner, P. R.
̈
Angew. Chem., Int. Ed. 2011, 50, 6012. (g) Pellissier, H. Adv. Synth. Catal.
2011, 353, 1613. (h) Enriquez-Garcia, A.; Kundig, E. P. Chem. Soc. Rev.
2012, 41, 7803. (i) Krasnov, V. P.; Gruzdev, D. A.; Levit, G. L. Eur. J. Org.
Chem. 2012, 2012, 1471.
(2) Vedejs, E.; Chen, X. J. Am. Chem. Soc. 1996, 118, 1809.
(3) Ruble, J. C.; Fu, G. C. J. Org. Chem. 1996, 61, 7230.
D
Org. Lett. XXXX, XXX, XXX−XXX