2005, 17, 163–171; (c) S. Eustis and M. A. El-Sayed, Chem. Soc. Rev.,
2006, 35, 209–217; (d) C.-C. You, A. Verma and V. M. Rotello, Soft
Matter, 2006, 2, 190–204.
4 (a) D. I. Gittins, D. Bethell, D. J. Schiffrin and R. J. Nichols, Nature,
2000, 408, 67–69.
5 (a) H. Li, Y. Y. Luk and M. Mrksich, Langmuir, 1999, 15, 4957–4959;
(b) P. Pengo, L. Baltzer, L. Pasquato and P. Scrimin, Angew. Chem., Int.
Ed., 2007, 46, 400–404.
6 C.-C. You, O. R. Miranda, B. Gider, P. S. Ghosh, I. B. Kim,
B. Erdogan, S. A. Krovi, U. H. F. Bunz and V. M. Rotello, Nat.
Nanotechnol., 2007, 2, 318–323.
show higher activity against ligand exchange. On the other hand,
the steric hindrance in close proximity to the thiol group in the case
of GSH drastically reduces its activity in ligand-exchange
reactions. DTT displays slightly higher activity over DHLA. One
plausible explanation is that the molecular size of the former is
smaller and it can penetrate the monolayer more easily during
the ligand-exchange reaction. Taken together, the three MPCs
show interesting activity and/or inertness against ligand exchange,
confirming the important role of monolayer packing in cluster
stability.
7 (a) I. H. El-Sayed, X. H. Huang and M. A. El-Sayed, Nano Lett., 2005,
5, 829–834; (b) P. K. Jain, I. H. El-Sayed and M. A. El-Sayed, Nano
Today, 2007, 2, 18–29.
In summary, we have explored the effect of subtle structural
changes of surface ligands on the cluster stability. These systematic
investigations on thermodynamic and kinetic stability of three
structurally related Au-MPCs reveal the modulation of surface
ligand packing through the introduction of substituents into the
side chain of ligands. The control over monolayer stability by
properly tuning ligand structures represents an important step
towards successful design of similar systems for future nanotech-
nology applications. The kinetic studies have demonstrated that
the ligand displacement rates by intracellular thiols (e.g. DHLA
and GSH) are critically dependent on the monolayer composition.
Such activity diversity can be utilized to achieve temporal release of
drug molecules from MPC-based drug delivery systems. Tunable
access of MPCs through chemical modification of monolayer
structures and incorporation of targeting functionalities will
further lead to controlled delivery in vivo.
8 A. C. Templeton, M. P. Wuelfing and R. W. Murray, Acc. Chem. Res.,
2000, 33, 27–36.
9 H. Bayraktar, P. S. Ghosh, V. M. Rotello and M. J. Knapp, Chem.
Commun., 2006, 1390–1392.
10 (a) C. M. McIntosh, E. A. Esposito, A. K. Boal, J. M. Simard,
C. T. Martin and V. M. Rotello, J. Am. Chem. Soc., 2001, 123,
7626–7629; (b) G. Han, C.-C. You, B. J. Kim, R. S. Turingan,
N. S. Forbes, C. T. Martin and V. M. Rotello, Angew. Chem., Int. Ed.,
2006, 45, 3165–3169; (c) C. Agbasi-Proter, J. Ryman-Rasmussen,
S. Franzen and D. Feldheim, Bioconjugate Chem., 2006, 17, 1178–1183.
11 (a) K. K. Sandhu, C. M. McIntosh, J. M. Simard, S. W. Smith and
V. M. Rotello, Bioconjugate Chem., 2002, 13, 3–6; (b) N. L. Rosi,
D. A. Giljohann, C. S. Thaxton, A. K. R. Lytton-Jean, M. S. Han and
C. A. Mirkin, Science, 2006, 312, 1027–1030.
12 (a) G. Han, N. S. Chari, A. Verma, R. Hong, C. T. Martin and
V. M. Rotello, Bioconjugate Chem., 2005, 16, 1356–1359; (b) R. Hong,
G. Han, J. M. Fernandez, B. J. Kim, N. S. Forbes and V. M. Rotello,
J. Am. Chem. Soc., 2006, 128, 1078–1079.
13 A. C. Templeton, M. J. Hostetler, C. T. Kraft and R. W. Murray, J. Am.
Chem. Soc., 1998, 120, 1906–1911.
14 L. Fabris, S. Antonello, L. Armelao, R. L. Donkers, F. Polo, C. Toniolo
and F. Maran, J. Am. Chem. Soc., 2006, 128, 326–336.
15 C. S. Love, I. Ashworth, C. Brennan, V. Chechik and D. K. Smith,
J. Colloid Interface Sci., 2006, 302, 178–186.
16 R. Hong, J. M. Ferna´ndez, H. Nakade, R. Arvizo, T. Emrick and
V. M. Rotello, Chem. Commun., 2006, 2347–2349.
Acknowledgements
This research is supported by the Center for Hierarchical
Manufacturing (NSEC, DMI-0531171), MRSEC facilities,
and National Institute of Health (NIH, GM077173).
17 M. Zheng, F. Davidson and X. Y. Huang, J. Am. Chem. Soc., 2003,
125, 7790–7791.
18 R. H. Terrill, T. A. Postlethwaite, C. H. Chen, C. D. Poon, A. Terzis,
A. D. Chen, J. E. Hutchison, M. R. Clark, G. Wignall, J. D. Londono,
R. Superfine, M. Falvo, C. S. Johnson, E. T. Samulski and
R. W. Murray, J. Am. Chem. Soc., 1995, 117, 12537–12548.
19 (a) A. Kumar and G. M. Whitesides, Appl. Phys. Lett., 1993, 63,
2002–2004; (b) C. S. Weisbecker, M. V. Merritt and G. M. Whitesides,
Langmuir, 1996, 12, 3763–3772.
Notes and references
{ Repeated experiments indicate a reproducibility of ¡3 uC.
§ According to the TGA and TEM results, it is estimated that ligand
densities of NP_Sec, NP_Nor and NP_Iso are 3.1, 4.5, and 4.3 ligand nm22
,
respectively. The relatively lower ligand density of NP_Sec is not surprising
as the steric repulsion between the methyl groups adjacent to the surface
bound sulfur atom would lead to a bigger footprint of the ligands.
20 J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo and
G. M. Whitesides, Chem. Rev., 2005, 105, 1103–1170.
21 A. M. Jackson, Y. Hu, P. J. Silva and F. Stellacci, J. Am. Chem. Soc.,
2006, 128, 11135–11149.
1 M. Brust, M. Walker, D. Bethell, D. J. Schiffrin and R. Whyman,
J. Chem. Soc., Chem. Commun., 1994, 801.
2 M.-C. Daniel and D. Astruc, Chem. Rev., 2004, 104, 293–346.
3 (a) K. G. Thomas and P. V. Kamat, Acc. Chem. Res., 2003, 36,
888–898; (b) L. Pasquato, P. Pengo and P. Scrimin, Supramol. Chem.,
22 (a) M. J. Hostetler, A. C. Templeton and R. W. Murray, Langmuir,
1999, 15, 3782–3789; (b) M. Montalti, L. Prodi, N. Zaccheroni,
R. Baxter, G. Teobaldi and F. Zerbetto, Langmuir, 2003, 19, 5172–5174.
This journal is ß The Royal Society of Chemistry 2008
J. Mater. Chem., 2008, 18, 70–73 | 73