Ring InVersion in N-Sulfonyl Morpholines
SCHEME 1
including saluretics, carbonic anhydrase inhibitors, insulin-
releasing sulfonamides, antithyroid agents, and a number of
other biological activities.4-6 In addition, the sulfonamide group
is used for protecting the nitrogen in amines.7 Another important
feature of sulfonamides is the ability to inhibit dihydropteroate
synthase.4-6
All these important bioactive properties are strongly affected
by the special features of the -CH2-SO2-NR- linker and
intramolecular mobility in its proximity.7,8 Thus, studies of
energetic and spatial properties of N-substituted sulfonamides/
morpholines are of great importance for improving our under-
standing of their biological activities and to enhance abilities
to predict new drugs. Thus, the successful study of the
interconversion about bonds to nitrogen in nitrogen-containing
organic molecules has been a cornerstone of research interest
for the last half century.6-22 For example, many studies of
azacyclic compounds have been performed in order to determine
the relative importance of such factors as steric, resonance,
hybridization, and solvent effects on both the ground state and
the transition state of the ring interconversion process.9-12
double bond was investigated;24,25 hereby several sets of methyl
sulfonyl and aryl sulfonyl compounds were studied. Within this
present study, the previous investigations of Sandstro¨m et al.28
and Lunazzi et al.29 on N-acyl morpholines were continued and
a series of analogous morpholine derivatives la-e investigated,
containing substituents of similar size but different electron-
withdrawing ability.
To the best of our knowledge, dynamic NMR spectroscopic
studies concerning both conformation and the dynamic behavior
of the N-S bond in the aryl- or alkyl-sulfonyl morpholines
1a-e have not yet been undertaken. Among three distinct
processessa ring inversion, nitrogen inversion, and N-S
rotationsthe observed free energy barriers are attributed to
the ring inversion. It is the major aim of this paper to determine
the effect of exocyclic conjugation on the barrier to morpholine
ring inversion by dynamic 1H NMR spectroscopy and to analyze
the factors (including the importance of (nN-dS)-π orbital
interaction and the negative hyperconjugationsanomeric effectsin
the N-S bond) on this dynamic parameter.
1
In recent years, we reported the synthesis and dynamic H
NMR spectroscopic study of several nitrogen-containing organic
molecules.23-27 Especially the rotation about the N-S partial
(4) (a) Remko, M. J. Phys. Chem. A 2003, 107, 720–725. (b) Navia, M. A.;
Drews, J. Science 2000, 288, 2132–2133.
(5) (a) Ruano, J. L. G.; Parra, A.; Yuste, F.; Mastranzo, V. M. Synthesis
2008, 311–319. (b) De Luca, L.; Giacomelli, G. J. Org. Chem. 2008, 73, 3967–
3969. (c) Caddick, S.; Wilden, J. D.; Judd, D. B. J. Am. Chem. Soc. 2004, 126,
1024–1025. (d) Pandya, R.; Murashima, T.; Tedeschi, L.; Barrett, A. G. M. J.
Org. Chem. 2003, 68, 8274–8276. (e) Frost, C. G.; Hartley, J. P.; Griffinb, D.
Synlett 2002, 1928–1930.
(6) Dugave, C.; Demange, L. Chem. ReV. 2003, 103, 2475–2532.
(7) (a) Bharatam, P. V.; Gupta, A. A.; Kaur, D. Tetrahedron 2002, 58, 1759–
1764. (b) Lee, P. S.; Du, W.; Boger, D. L.; Jorgensen, W. L. J. Org. Chem.
2004, 69, 5448–5453.
(8) Petrov, V. M.; Girichev, G. V.; Oberhammer, H.; Petrova, V. N.;
Giricheva, N. I.; Bardina, A. V.; Ivanov, S. N. J. Phys. Chem. A 2008, 112,
2969–2976.
(9) (a) Kleinpeter, E. AdV. Heterocycl. Chem. 2004, 86, 41–127. (b)
Kleinpeter, E. AdV. Heterocycl. Chem. 1996, 69, 217–250.
(10) (a) Kleinpeter, E. J. Mol. Struct. 1996, 380, 139–156. (b) Pihlaja, E.;
Kleinpeter, E. 13C NMR Chemical Shifts. In Structural and Stereochemical
AnalysissMethods in Stereochemical Analysis; VCH Publishers: New York,
1994.
(11) Oki, M. Application of Dynamic NMR Spectroscopy to Organic
Chemistry; VCH Publishers: New York, 1985.
(12) Pinto, B. M.; Grindley, T. B.; Szarek, W. A. Magn. Reson. Chem. 1986,
24, 323–331.
(13) Gu¨nther, H. NMR Spectroscopy: Wiley: New York, 1995; Chapter 9.
(14) Garratt, P. J.; Thom, S. N.; Wrigglesworth, R. Tetrahedron 1994, 50,
12211–12218.
(15) Raban, M., Kost, D. Acyclic Organonitrogen Stereodynamics; Lambert,
J. B., Takeuchi, Y., Eds.; VCH publishers: New York, 1992.
(16) Eliel, E. L.; Wilen, S. H.; Mander, L. N. Stereochemistry of Organic
Compounds; John Wiley: New York, 1994; Chapter 10.
(17) Lambert, J. B. Top. Stereochem. 1971, 6, 19–105.
(18) Eliel, E. L.; Allinger, N. I.; Angyal, S. J.; Morrison, G. A. Conforma-
tional Analysis; John Wiley: New York, 1967; Chapter 3.
(19) Kalinowski, H.-O.; Kessler, H. Top. Stereochem. 1973, 7, 295–383.
(20) (a) Patai, S., Ed. The Chemistry of the Carbon-Nitrogen Double Bond;
Wiley: New York, 1970. (b) Patai, S., Ed. The Chemistry of Amidines and
Imidates; Wiley: New York, 1975.
Results and Discussion
Compounds 1 (Scheme 1) were prepared from morpholine
and sulfonylchlorides according to literature procdures.5d,30,31
The results of the variable-temperature 1H NMR study of
N-(aryl-alkylsulfonyl) morpholines 1a-e are given in Table 1.
Gradual cooling of the samples broadens the H NMR signals
of the CH2 protons of the morpholine ring in 1a-e which
decoalesence and, at lower temperatures, split furthermore into
1
1
two sets of signals (see Figure 1 for the H NMR study of
N-(methylsulfonyl) morpholine 1a in CD3COCD3 at ambient
temperature and 183 K). The ring protons of the morpholine
moiety in 1a appeared as two triplets at δ 3.7 and 3.2 (at a
ratio of 4:4) at room temperature; at lower temperatures, the
two triplets of the methylene protons broadened and decoalesced
at 210 K into two broadened signals each, which on further
cooling to 183 K formed broadened pairs of triplets and
doublets. The two doublets of the equatorial protons at δ 3.9
and 3.35 (2Jgem ) 11.1 Hz) are caused by geminal coupling
and coupling to unresolved vicinal axial/equatorial protons (two
broadened doublet-like signals), whereas the two triplets of the
axial protons at δ 3.44 and 2.8 (2Jgem ≈ Jaxax ≈ 10.9 Hz) are
3
caused by geminal and vicinal coupling to axial protons. In fact,
the system is AA′XX′ at low temperature. Since Jee ≈ Jae ≈ 0
it has been converted to AB2, that is a triplet for axial proton
and a doublet for equatorial proton. Similar dynamic behavior
was observed for the 1H NMR spectra of the other compounds
(21) Binsch, G.; Kessler, H. Angew. Chem., Int. Ed. Engl. 1980, 19, 411–
428.
(22) Binsch, G. Top. Stereochem. 1968, 3, 97–192.
(23) Modarresi-Alam, A. R.; Najafi, P.; Rostamizadeh, M.; Keykha, H.;
Bijanzadeh, H.-R.; Kleinpeter, E. J. Org. Chem. 2007, 72, 2208–2211.
(24) Modarresi-Alam, A. R.; Khamooshi, F.; Rostamizadeh, M.; Keykha,
H.; Nasrollahzadeh, M.; Bijanzadeh, H.-R.; Kleinpeter, E. J. Mol. Struct. 2007,
841, 61–66.
(28) Le Cam, P.; Sandstrom, J. Chem. Scr. 1971, 1, 65–68.
(29) Lunazzi, L.; Casarini, D.; Cremonini, M. A.; Anderson, J. E. Tetrahedron
1991, 47, 7465–7470.
(30) Furniss, B. S.; Hannaford, A. J.; Smith, P. W. G.; Tatchell, A. R. Vogel’s
Textbook of Practical Organic Chemistry, 4th ed.; Longman: London, 1986.
(31) Jones, T. R.; Varney, M. D.; Webber, S. E.; Lewis, K. K.; Marzoni,
G. P.; Palmer, C. L.; Kathardekar, V.; Welsh, K. M.; Webber, S.; Matthews,
D. A.; Appelt, K.; Smith, W. W.; Janson, C. A.; Villafranca, J. E.; Bacquet,
R. J.; Howland, E. F.; Booth, C. L. J.; Herrmann, S. M.; Ward, R. W.; White,
J.; Moomaw, E. W.; Bartlett, C. A.; Morse, C. A. J. Med. Chem. 1996, 39,
904–917.
(25) Modarresi-Alam, A. R.; Keykha, H.; Khamooshi, F.; Dabbagh, H. A.
Tetrahedron 2004, 60, 1525–1530.
(26) Dabbagh, H. A.; Modarresi-Alam, A. R.; Tadjarodi, A.; Taeb, A.
Tetrahedron 2002, 58, 2621–2625.
(27) Dabbagh, H. A.; Modarresi-Alam, A. R. J. Chem. Res. (S) 2000, 190–
192.
J. Org. Chem. Vol. 74, No. 13, 2009 4741