Page 5 of 6
ACS Catalysis
1
2
Supporting Information. General experimental methods,
butyn-2-ol (10 mmol) (298 K, [D6]-DMSO in capillary
3
4
5
yields determination and characterization of the products.
“This material is available free of charge via the Internet at
http://pubs.acs.org.”
as an internal standard).
6
7
AUTHOR INFORMATION
8
9
Corresponding Author
*E-mail: liuzm@iccas.ac.cn
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Author Contributions
‡These authors contributed equally.
ACKNOWLEDGMENT
The authors thank the National Natural Science Foundation
of China (21403252, 21533011, 21503239), and the Chinese
Academy of Sciences (QYZDY-SSW-SLH013).
REFERENCES
(1) Schneidewind, J.; Adam, R.; Baumann, W.; Jackstell, R.; Beller, M.
Angew. Chem. Int. Ed. 2017, 56, 1890-1893.
(2) Rohmann, K.; Kothe, J.; Haenel, M. W.; Englert, U.; Hölscher, M.;
Leitner, W. Angew. Chem. Int. Ed. 2016, 55, 8966-8969.
Scheme 2. Possible reaction pathway
(3) Wang, X. C.; Zhou, Y.; Guo, Z. J.; Chen, G. J.; Li, J.; Shi, Y. M.; Liu,
Y. Q.; Wang, J. Chem. Sci. 2015, 6, 6916-6924.
On the basis of the experimental results and previous
reports,15-25 a possible machanism was proposed, as shown
in Scheme 2. In the presence of IL, CO2 is captured and
activated by the anion of IL to form poly-carbonate
intermediate a, meanwhile the O-H bond in propargylic
alcohol is activated by the anion [2,4-OPym-5-Ac]3- via
hydrogen bonding, thus further activating the triple bond
in propargylic alcohol via inductive effect. Then, the
intermediate a adds to the triple bond of propargylic
alcohol via nucleophilic attack, forming intermediate b,
followed by hydrogen migration from the hydroxy group
of the alcohol to produce intermediate c. Finally, the
alkoxide anion of intermediate c attacks the carbonyl
carbon atom to form the α-alkylidene cyclic carbonate,
with the release of the IL.
In summary, a series of [Bu4P]+-based ILs with mul-
tiple-site for CO2 capture and activation in their anions
were presented, which could efficiently catalyze the cy-
clization reaction of propargylic alcohols with CO2 at am-
bient conditions. The IL, [Bu4P]3[2,4-OPym-5-Ac], which
has three interaction sites for attracting CO2 together
with a pKa1 value of 9.13, exhibited highly efficient effi-
ciency, affording a series of α-alkylidene cyclic carbonates
in moderate to good yields. The mechanism exploration
demonstrated that the IL served as a bifunctional catalyst
with anion simultaneously activating CO2 via multiple-
site cooperative interactions and the C≡C triple bond in
propargylic alcohol substrate via inductive effect, thus
resulting in the production of α-alkylidene cyclic car-
bonates. This kind of ILs may find promising applications
in CO2 transformation under mild conditions.
(4) (a) Song, Q. W.; Zhou, Z. H.; He, L. N. Green Chem. 2017,
DOI:10.1039/c1037gc00199a; (b) Fiorani, G.; Guo, W.; Kleij, A. W.
Green Chem. 2015, 17, 1375-1389; (c) Liu, H. Y.; Mei, Q. Q.; Xu, Q. L.;
Song, J. L.; Liu, H. Z.; Han, B. X. Green Chem. 2017, 19, 196-201.
(5) (a) Garcia Dominguez, P.; Fehr, L.; Rusconi, G.; Nevado, C. Chem.
Sci. 2016, 7, 3914-3918; (b) Liu, X. F.; Qiao, C.; Li, X. Y.; He, L. N.
Green Chem. 2017, 19, 1726-1731; (c) Lv, H.; Xing, Q.; Yue, C.; Lei, Z.
Q.; Li, F. W. Chem. Commun. 2016, 52, 6545-6548; (d) Hao, L. D.; Zhao,
Y. F.; Yu, B.; Yang, Z. Z.; Zhang, H. Y.; Han, B. X.; Gao, X.; Liu, Z. M.
ACS Catal. 2015, 5, 4989-4993; (e) Hu, J. Y.; Ma, J.; Zhu, Q. G.; Zhang,
Z. F.; Wu, C. Y.; Han, B. X. Angew. Chem. Int. Ed. 2015, 54, 5399-5403;
(f) Tao, D. J.; Chen, F. F.; Tian, Z. Q.; Huang, K.; Mahurin, S. M.; Jiang,
D. E.; Dai, S. Angew. Chem. Int. Ed. 2017, 56, 6843-6847; (g) Jacquet, O.;
Das Neves Gomes, C.; Ephritikhine, M.; Cantat, T. J. Am. Chem. Soc.
2012, 134, 2934-2937; (h) Das, S.; Bobbink, F. D.; Laurenczy, G.; Dyson,
P. J. Angew. Chem. Int. Ed. 2014, 53, 12876-12879; (i) Courtemanche, M.
A.; Légaré, M. A.; Maron, L.; Fontaine, F. G. J. Am. Chem. Soc. 2014,
136, 10708-10717; (j) Courtemanche, M. A.; Pulis, A. P.; Rochette, E.;
Legare, M. A.; Stephan, D. W.; Fontaine, F. G. Chem. Commun. 2015, 51,
9797-9800.
(6) (a) Cui, G. K.; Wang, J. J.; Zhang, S. J. Chem. Soc. Rev. 2016, 45,
4307-4339; (b) Wang, H.; Meng, X.; Zhao, G.; Zhang, S. Green Chem.
2017, 19, 1462-1489; (c) Chen, K. H.; Shi, G. L.; Zhang, W. D.; Li, H. R.;
Wang, C. M. J. Am. Chem. Soc. 2016, 138, 14198-14201.
(7) (a) Wang, C. M.; Luo, X. Y.; Luo, H. M.; Jiang, D. E.; Li, H. R.; Dai,
S. Angew. Chem. Int. Ed. 2011, 50, 4918-4922; (b) Wang, C. M.; Luo, H.
M.; Jiang, D. E.; Li, H. R.; Dai, S. Angew. Chem. Int. Ed. 2010, 49, 5978-
5981; (c) Ding, F.; He, X.; Luo, X. Y.; Lin, W. J.; Chen, K. H.; Li, H. R.;
Wang, C. M. Chem. Commun. 2014, 50, 15041-15044.
(8) Wang, C. M.; Luo, H. M.; Li, H. R.; Zhu, X.; Yu, B.; Dai, S. Chem. -
Eur. J. 2012, 18, 2153-2160.
(9) Chen, F. F.; Huang, K.; Zhou, Y.; Tian, Z. Q.; Zhu, X.; Tao, D. J.;
Jiang, D. E.; Dai, S. Angew. Chem. Int. Ed. 2016, 55, 7166-7170.
(10) Luo, X. Y.; Guo, Y.; Ding, F.; Zhao, H. Q.; Cui, G. K.; Li, H. R.;
Wang, C. M. Angew. Chem. Int. Ed. 2014, 53, 7053-7057.
(11) Zhao, Y. F.; Yu, B.; Yang, Z. Z.; Zhang, H. Y.; Hao, L. D.; Gao, X.;
Liu, Z. M. Angew. Chem. Int. Ed. 2014, 53, 5922-5925.
(12) Yuan, G. F.; Zhao, Y. F.; Wu, Y. Y.; Li, R. P.; Chen, Y.; Xu, D. M.;
Liu, Z. M. Sci. China Chem. 2017, 60, 958-963.
ASSOCIATED CONTENT
(13) (a) Zhao, Y. F.; Yang, Z. Z.; Yu, B.; Zhang, H. Y.; Xu, H. J.; Hao, L.
D.; Han, B. X.; Liu, Z. M. Chem. Sci. 2015, 6, 2297-2301; (b) Hu, J. Y.;
5
ACS Paragon Plus Environment