3
17
Synlett
Y. Matsukawa, T. Hirashita
Letter
OH
R2
1 (5 mol%)
O
observed (Equation 3). This result suggests that radical in-
termediates may not be involved in the Cu–1-catalyzed aer-
obic oxidation, similar to the Cu–TEMPO system.12
R1
R1
R2
CuI (5 mol%), bpy (5 mol%),
NMI (10 mol%), MeCN, air, r.t.
2
3
O
O
O
1
(5 mol%)
2
p
+
O
Ph
OH
Ph
O
H
H
H
CuI (5 mol%), bpy (5 mol%),
NMI (10 mol%), 24 h,
MeCN (4.0 mL), air, r.t.
2
p
3p
38%
Ph
H
61%
Cl
O2N
MeO2C
0.4 mmol
3
a
3b
83%c
(3.0 h)
3c
89%
(3.0 h)
3d
84%
(3.0 h)
Equation 3
b
c
c
9
4% (6%)
24 h)
(
O
O
H
O
O
In summary, mesoionic hydroxyamide 1 and a copper
salt can function as a catalytic system for the aerobic oxida-
H
H
H
tion of benzylic alcohols to the corresponding carbonyl
Ph
MeO
HO
H2N
compounds.1
3–15
In the presence of 1 (5 mol%), CuI (5 mol%),
3
9%
3.0 h)
e
3f
3g
3h
bpy (5 mol%), and NMI (10 mol%), benzyl alcohol and ben-
zylic alcohols bearing electron-withdrawing groups were
oxidized to aldehydes in 83–99% yield, whereas benzylic al-
cohols with amino or oxygenated functionalities, some of
which are incapable of being oxidized by the Cu–TEMPO
catalyst, were transformed into the corresponding alde-
hydes in 30–57% yield. Aliphatic alcohols, in contrast, were
oxidized with low yields or not at all, and thus benzylic al-
cohols can be selectively oxidized in the presence of ali-
phatic alcohols.
c
53% (47%)d
(24 h)
30% (60%)d
(24 h)
d
9
(
57% (43%)
(24 h)
O
H
O
O
Ph
H
Ph
Ph
N
3
i
3j
99%
(3.0 h)
3k
d
c
99%d
(3.0 h)
6
0% (38%)
(
24 h)
O
O
9
O
O
H
8
EtO2C
Supporting Information
3l
3m
3n
0% (98%)
(24 h)
3o
b
4% (86%)b
(24 h)
c
d
Supporting information for this article is available online at
13% (87%)
31% (67%)
(24 h)
(
24 h)
https://doi.org/10.1055/s-0037-1611698.
S
u
p
p
orit
n
g Inform ati
o
n
S
u
p
p
orit
n
g Inform ati
o
n
O
O
O
O
Ph
H
H
References and Notes
H
H
O2N
O2N
9
(
1) Wertz, S.; Studer, A. Green Chem. 2013, 15, 3116.
(2) Brackman, W.; Gaasbeek, C. J.; Smit, P. J. Rec. Trav. Chim. 1966,
5, 437.
3
7%
c
3a
3c
94%d
3l
d
48% (49%)d
d
9
0% (100%)
8
(
3.0 h)
(3.0 h)
(3) Semmelhack, M. F.; Schmid, C. R.; Cortes, D. A.; Chou, C. S. J. Am.
Chem. Soc. 1984, 106, 3374.
(
4) (a) Gamez, P.; Arends, I. W. C. E.; Reedijk, J.; Sheldon, R. A. Chem.
Commun. 2003, 2414. (b) Gamez, P.; Arends, I. W. C. E.; Sheldon,
R. A.; Reedijk, J. Adv. Synth. Catal. 2004, 346, 805.
5) Betzemeier, B.; Cavazzini, M.; Quici, S.; Knochel, P. Tetrahedron
Lett. 2000, 41, 4343.
O
O
O
O
Ph
H
Ph
Ph
H
Ph
(
3a
3p
3i
56% (44%)d
3q
d
36% (47%)d
d
6
5% (8%)
18% (46%)
(
3.0 h)
(3.0 h)
(6) Kumpulainen, E. T. T.; Koskinen, A. M. P. Chem. Eur. J. 2009, 15,
0901.
(7) Hoover, J. M.; Stahl, S. S. J. Am. Chem. Soc. 2011, 133, 16901.
1
Scheme 1 Scope of the Cu–1-catalyzed aerobic oxidation of alcohols.
Reaction conditions: 2 (0.40 mmol), CuI (5 mol%), bpy (5 mol%), NMI
10 mol%), and 1 (5 mol%) in MeCN (4.0 mL) at room temperature. Val-
a
(
8) Hickey, D. P.; Schiedler, D. A.; Matanovic, I.; Doan, V.; Atanassov,
P.; Minteer, S. D.; Sigman, M. S. J. Am. Chem. Soc. 2015, 137,
16179.
(
b
c
ues in parentheses are the recoveries of 2. Determined by GC. Isolat-
ed yield. d Determined by H NMR spectroscopy.
1
(
9) Araki, S.; Yamamoto, K.; Yagi, M.; Inoue, T.; Fukagawa, H.;
Hattori, H.; Yamamura, H.; Kawai, M.; Butsugan, Y. Eur. J. Org.
Chem. 1998, 121.
are difficult to oxidize with the (bpy)Cu –TEMPO system.7
-Phenylcyclopropylmethanol (2r), a radical clock sub-
strate, was subjected to this aerobic oxidation in order to
gain insight into the mechanism. Although we anticipated
that aliphatic alcohols would be resistant to the oxidation,
as seen in Scheme 1, the corresponding aldehyde 3r was ob-
tained in moderate yield and no ring-opened product was
I
(
10) (a) Matsukawa, Y.; Hirashita, T.; Araki, S. Tetrahedron 2017, 73,
2
6052. (b) Matsukawa, Y.; Hirashita, T.; Araki, S. Eur. J. Org. Chem.
2018, 1359.
(
11) (a) Badalyan, A.; Stahl, S. S. Nature 2016, 535, 406. (b) The redox
+
potential of TEMPO (0.31 V vs. Ag/Ag ) was observed in acetoni-
trile.
©
Georg Thieme Verlag Stuttgart · New York — Synlett 2019, 30, 315–318