1002 Bull. Chem. Soc. Jpn. Vol. 82, No. 8 (2009)
© 2009 The Chemical Society of Japan
(hexane-EtOAc 1:1); IR (neat): 2938, 2874, 1736, 1707, 1458,
1375, 1246, 1130, 1032, 949 cm¹1; 1H NMR (600 MHz): ¤ 0.96 (d,
J = 6.6 Hz, 3H), 1.20 (d, J = 6.6 Hz, 3H), 1.20-1.40 (m, 4H), 1.46
(m, 1H), 1.56 (m, 1H), 1.95 (m, 1H), 2.03 (s, 3H), 2.16 (ddd,
J = 15.1, 8.1, 2.4 Hz, 1H), 2.33 (ddd, J = 15.1, 6.1, 3.2 Hz, 1H),
4.88 (m, 1H); 13C NMR (75.5 MHz): ¤ 19.48 + 19.51, 19.8, 19.9,
21.3, 22.6, 35.8, 36.20 + 36.22, 41.39 + 41.45, 70.84 + 70.87,
170.9, 179.2. HRMS (ESI) calcd for C11H21O4 (MH+) 217.1440,
found 217.1436 (MH+).
Supporting Information
Spectral data including IR, H NMR, and 13C NMR spectra of
3a-3j are provided. This material is available free of charge on the
1
References
1
G. Tojo, M. Fernández, Oxidation of Primary Alcohols to
Carboxylic Acids: A Guide to Current Common Practice, Springer,
New York, 2006.
2-(4-Acetylphenyl)propanoic Acid (3e): Yield 92%; Rf =
0.37 (hexane-EtOAc 1:1); IR (neat): 2970, 1709, 1680, 1605, 1456,
2
1420, 1358, 1329, 1271, 1246, 1188, 1119, 1082, 997, 961, 932,
¹1
866, 851, 833, 764, 692 cm
;
1H NMR (300 MHz): ¤ 1.53 (d,
J = 7.1 Hz, 3H), 2.58 (s, 3H), 3.80 (q, J = 7.1 Hz, 1H), 7.41
(d, J = 8.2 Hz, 2H), 7.91 (d, J = 8.2 Hz, 2H); 13C NMR (75.5
MHz): ¤ 17.8, 26.4, 45.2, 127.8 (2C), 128.6 (2C), 135.9, 145.2,
179.0, 198.1.
3
TEMPO oxidation, reviews: a) T. Vogler, A. Studer,
Matsumoto, S. Torii, J. Synth. Org. Chem., Jpn. 1993, 51, 910.
3-Oxolanecarboxylic Acid (3f):
Yield 82%; Rf = 0.32
(hexane-EtOAc 1:1); IR (neat): 2982, 2884, 1736, 1710, 1417,
1211, 1188, 1065, 905 cm¹1; 1H NMR (300 MHz): ¤ 2.10-2.29 (m,
2H), 3.09-3.18 (m, 1H), 3.79-3.95 (m, 2H), 3.99 (d, J = 6.6 Hz,
2H); 13C NMR (75.5 MHz): ¤ 29.3, 43.4, 68.1, 69.4, 179.0.
4
In MeCN-aqueous system: a) M. Zhao, J. Li, E. Mano, Z.
Song, D. M. Tschaen, E. J. J. Grabowski, P. J. Reider, J. Org.
293. In CH2Cl2-aqueous system: d) K. Kloth, M. Brünjes, E.
Kunst, T. Jöge, F. Gallier, A. Adibekian, A. Kirschning, Adv.
system: f) T. Yoshida, M. Kuroboshi, J. Oshitani, K. Gotoh, H.
3,6,9-Trioxadecanoic Acid (3g):
Yield 87%; Rf = 0.59
(hexane-EtOAc 5:1); IR (neat): 2928, 2891, 1717, 1452, 1356,
1316, 1277, 1248, 1200, 1177, 1113, 1072, 1026, 852, 718,
684 cm¹1; 1H NMR (300 MHz): ¤ 3.39 (s, 3H), 3.56-3.59 (m, 2H),
3.68-3.72 (m, 4H), 3.76-3.79 (m, 2H), 4.12 (s, 2H).
5-Formyl-2-furancarboxylic Acid (3h):
Yield 85%; IR
(KBr): 3144, 3107, 2930, 1674, 1568, 1518, 1435, 1397, 1346,
¹1
1294, 1260, 1221, 1165, 1043, 963, 849, 783 cm
;
1H NMR
(300 MHz in methanol-D4): ¤ 7.38 (d, J = 3.8 Hz, 1H), 7.50 (d,
J = 3.8 Hz, 1H), 9.79 (s, 1H); 13C NMR (75.5 MHz in methanol-
D4): ¤ 119.0, 121.1, 148.4, 154.4, 158.6, 179.3, 179.3.
5
Gautier, R. Dumeunier, K. Dodo, F. Philippart, I. Chelle-Regnault,
J.-L. Mutonkole, S. M. Brown, C. J. Urch, Transition Metals for
Organic Synthesis, 2nd ed., Wiley-VCH, Weinheim, 2004, Vol. 2,
p. 437.
1-O-Methyl-3,4-O-cyclohexylidene-¡-D-ribouronic Acid (3i):
31
Yield 97%; Rf = 0.4 (hexane-EtOAc 1:2); ½¡ꢀD ¹50.2° (c 0.9,
CHCl3); IR (neat): 2937, 2862, 2673, 1715, 1450, 1417, 1368,
1273, 1223, 1165, 1115, 1047, 949, 924, 853, 833, 800, 752,
673 cm¹1; 1H NMR (300 MHz): ¤ 1.39 (m, 2H), 1.55 (m, 4H), 1.61
(m, 2H), 1.70 (m, 2H), 3.43 (s, 3H), 4.57 (d, J = 5.2 Hz, 1H),
4.67 (brs, 1H), 5.08 (s, 1H), 5.17 (d, J = 5.7 Hz, 1H); 13C NMR
(75.5 MHz): ¤ 23.7, 23.9, 24.9, 34.4, 36.0, 55.6, 81.7, 83.62,
83.70, 109.6, 113.7, 175.1. HRMS (ESI) calcd for C12H19O6
(MH+) 259.1182, found 259.1151 (MH+).
6
Manufacturing preparation process of THP was recently
established: I. Yamagami, H. Yasuda, PCT Int. Appl. WO
2006062211, 2006; I. Yamagami, H. Yasuda, CAN 145:62784.
7
Z.-W. Mei, T. Omote, M. Mansour, H. Kawafuchi, Y.
8
Solubility (wt %) of water to the solvent (of the solvent to
1,2:3,4-Di-O-isopropylidene-¡-D-galactopyranuronic Acid
(3j): Yield 97%; Rf = 0.2 (hexane-EtOAc 1:5); mp 149-150 °C
water): THP = 2.5 (8.1), CPME = 0.3 (1.1), MTBE = 1.5 (4.8),
THF = ¨ (¨) (Cited from technical reports of Showadenko Co.
and ZEON Corporation, Japan).
22
(from hexane-EtOAc) (lit.4d 152 °C); ½¡ꢀD ¹91.2° (c 1.4, CHCl3)
(Ref.4d ¹102.9°); 1H NMR (300 MHz): ¤ 1.35 (s, 6H), 1.45 (s,
3H), 1.53 (s, 3H), 4.40 (dd, J = 4.95, 2.5 Hz, 1H), 4.46 (d,
J = 2.2 Hz, 1H), 4.63 (dd, J = 7.7, 2.2 Hz, 1H), 4.69 (dd, J = 7.7,
2.5 Hz, 1H), 5.65 (d, J = 4.95 Hz, 1H).
9
H. Yasuda, Y. Uenoyama, O. Nobuta, S. Kobayashi, I. Ryu,
10 T. Inokuchi, S. Matsumoto, M. Fukushima, S. Torii, Bull.
56, 2416. b) T. Inokuchi, S. Matsumoto, T. Nishiyama, S. Torii,
12 a) J. N. Chheda, G. W. Huber, J. A. Dumesic, Angew.
13 H. Takada, Jpn. Kokai Tokkyo Koho JP 03101672, 1991.
This work was supported by the Electric Technology
Research Foundation of Chugoku, which is gratefully acknowl-
edged. We thank Wesco Scientific Promotion Foundation for
scholarship support. We are grateful to “SC-NMR laboratory of
Okayama University” for high-field NMR experiments, to
Professor Junzo Nokami, Okayama University of Science, for
HRMS analyses, and to Showadenko Co. for a generous gift of
THP.