X. Niu et al. / Tetrahedron Letters 53 (2012) 5559–5561
5561
2006, 54, 1455; (c) Ladika, M.; Fisk, T. E.; Wu, W. W.; Jons, S. D. J. Am. Chem. Soc.
1994, 116, 12093; (d) Mayer, S. F.; Steinreiber, A.; Orru, R. V. A.; Faber, K. J. Org.
Chem. 2002, 67, 9115; (e) Zeni, G.; Panatieri, R. B.; Lissner, E.; Menezes, P. H.;
Braga, A. L.; Stefani, H. A. Org. Lett. 2001, 3, 819; (f) Stüts, A. Angew. Chem., Int.
Ed. Engl. 1987, 26, 320; (g) Lechner, D.; Stavri, M.; Oluwatuyi, M.; Perda-
Miranda, R.; Gibbons, S. Phytochemistry 2004, 65, 331; (h) Constable, C. P.;
Towers, G. H. N. Ibid 1989, 55, 35.
2011, 1, 1351; (v) Feng, X.; Zhao, Z.; Yang, F.; Jin, T.; Ma, Y.; Bao, M. J.
Organomet. Chem. 2011, 696, 1479; (w) Kaluvu, B.; Venkitasamy, K. Synthesis
2010, 3461.
9. Glaser, C. Ber. Dtsch. Chem. Ges. 1869, 2, 422.
10. (a) Negishi, E.; Alimardanov, A. In Handbook of Organopalladium Chemistry for
Organic Synthesis; Negishi, E., Ed.; Wiley-Interscience: New York, 2002; Vol. 1, p
989; (b) Rossi, R.; Carpita, A.; Bigelli, C. Tetrahedron Lett. 1985, 26, 523; (c)
Vlassa, M.; Ciocan-Tarta, I.; Margineanu, F.; Oprean, I. Tetrahedron 1996, 52,
1337; (d) Liu, Q.; Burton, D. J. Tetrahedron Lett. 1997, 38, 4371; (e) Lei, A.;
Srivastava, M.; Zhang, X. J. Org. Chem. 1969, 2002, 67; (f) Fairlamb, I. J. S.;
Bauerlein, P. S.; Marrison, L. R.; Dickinson, J. M. Chem. Commun. 2003, 632; (g)
Batsanov, A. S.; Collings, J. C.; Fairlamb, I. J. S.; Holland, J. C.; Zhu, J. J. Org. Chem.
2005, 70, 703; (h) Li, J.-H.; Liang, Y.; Xie, Y.-X. J. Org. Chem. 2005, 70, 4393; (i) Li,
J.-H.; Liang, Y.; Zhang, X.-D. Tetrahedron 1903, 2005, 61; (j) Yang, F.; Cui, X.; Li,
Y.; Zhang, J.; Ren, G.; Wu, Y. Tetrahedron 1963, 2007, 63; (k) Chen, S. N.; Wu, W.
Y.; Tsai, F. Y. Green Chem. 2009, 11, 269.
3. Gholami, M.; Tykwinski, R. R. Chem. Rev. 2006, 106, 4997.
4. (a) Baxter, P. N. W.; Dali-Youcef, R. J. Org. Chem. 2005, 70, 4935; (b) Marsden, J.
A.; Haley, M. M. J. Org. Chem. 2005, 70, 10213.
5. Polyynes: Synthesis Properties, and Applications; Cataldo, F., Ed.; CRC Press/Taylor
&Francis: Boca Raton, Florida, 2005.
6. Diederich, F.; Stang, P. J.; Tykwinski, R. R. Acetylene Chemistry: Chemistry, Biology
and Material Science; Wiley-VCH GmbH & Co. KGaA: Weinheim, Germany,
2005.
7. Crowley, J. D.; Goldup, S. M.; Lee, A. L.; Leigh, D. A.; McBurney, R. T. Chem. Soc.
Rev. 2009, 38, 1530.
11. Li, D.; Yin, K.; Li, J.; Jia, X. Tetrahedron Lett. 2008, 49, 5918.
8. (a) Bai, D. H.; Li, C. J.; Li, J.; Jia, X. S. Chin. J. Org. Chem. 2012, 32, 994; (b) Haley,
M. M. Pure Appl. Chem. 2008, 80, 519; (c) Hay, A. S. J. Org. Chem. 1962, 27, 3320;
(d) Valenti, E.; Pericas, M. A.; Serratosa, F. J. Am. Chem. Soc. 1990, 112, 7405; (e)
Liao, Y.; Fathi, R.; Yang, Z. Org. Lett. 2003, 5, 909; (f) Oishi, T.; Katayama, T.;
Yamaguchi, K.; Mizuno, N. Chem. Eur. J. 2009, 15, 7539; (g) Adimurthy, S.;
Malakar, C. C.; Beifuss, U. J. Org. Chem. 2009, 74, 5648; (h) Eglington, G.;
Galbraith, R. J. Chem. Soc. 1959, 889; (i) Sonogashira, K.; Tohda, Y.; Hagihara, N.
Tetrahedron Lett. 1975, 50, 4467; (j) Yan, J.; Wu, J.; Jin, H. J. Organomet. Chem.
2007, 692, 3636; (k) Zheng, Q.; Hua, R.; Wan, Y. Appl. Organomet. Chem. 2010,
24, 314; (l) Kuhn, P.; Alix, A.; Kumarraja, M.; Louis, B.; Pale, P.; Sommer, J. Eur. J.
Org. Chem. 2009, 423; (m) ShiShun, A. L. K.; Tykwinski, R. R. Angew. Chem., Int.
Ed. 2006, 45, 1034; (n) Chen, Z.; Jiang, H.; Wang, A.; Yang, S. J. Org. Chem. 2010,
75, 6700; (o) Stefani, H. A.; Guarezemini, A. S.; Cella, R. Tetrahedron 2010, 66,
7871; (p) Kamata, K.; Yamaguchi, S.; Kotani, M.; Yamaguchi, K.; Mizuno, N.
Angew. Chem., Int. Ed. 2008, 47, 2407; (q) Crowley, J. D.; Goldup, S. M.; Gowans,
N. D.; Leigh, D. A.; Ronaldson, V. E.; Slawin, A. M. Z. J. Am. Chem. Soc. 2010, 132,
6243; (r) Schmidt, R.; Thorwirth, R.; Szuppa, T.; Stolle, A.; Ondruschka, B.; Hopf,
H. Chem. Eur. J. 2011, 17, 8129; (s) Zhang, S.; Liu, X.; Wang, T. Adv. Synth. Catal.
2011, 353, 1463; (t) Kusuda, A.; Xu, X. H.; Wang, X.; Tokunaga, E.; Shibata, N.
Green Chem. 2011, 13, 843; (u) Oishi, T.; Yamaguchi, K.; Mizuno, N. ACS Catal.
12. Yin, K.; Li, C. J.; Li, J.; Jia, X. Appl. Organomet. Chem. 2011, 25, 16.
13. (a) Yin, K.; Li, C. J.; Li, J.; Jia, X. Green Chem. 2011, 13, 591; (b) Jia, X.; Yin, K.; Li, C.
J.; Li, J.; Bian, H. S. Green Chem. 2011, 13, 2175.
14. General procedure for the homocoupling of terminal alkynes: alkyne (3.0 mmol)
and Cu(OAc)2ÁH2O (0.3 mmol) were added to a tube (100 mL) successively in
the open air. Then the tube was sealed, and the resulting mixture was allowed
to react at 110 °C. Progress of this reaction was monitored by TLC and the
reaction phenomena (The reactions passed through henna, gradually to black
from starting to end). After completion of the reaction, 30 mL of ethyl acetate
was added. The mixture was filtered through a pad of diatomite under reduced
pressure, and the filtration residue was washed with ethyl acetate. Ethyl
acetate was removed under reduced pressure. The residue was then purified by
column chromatography on silica gel using petroleum ether as eluent to afford
the corresponding 1,3-diynes. All of the products are known and were
characterized by comparison of their spectral data with those of authentic
samples. Selected data of 1,4-bis(4-methylphenyl)-1,3-butadiyne: 1H NMR
(500 MHz, CDCl3): d = 7.43 (d, J = 8.0 Hz, 4H, ArH), 7.15 (d, J = 8.0 Hz, 4H,
ArH), 2.37 (s, 6H, CH3). 13C NMR(125 MHz, CDCl3): d = 139.6, 132.5, 129.3,
118.9, 81.6, 73.5, 21.7. EI-MS m/z 230 [M+].