7622 J. Phys. Chem., Vol. 100, No. 18, 1996
Conboy et al.
(5) Takenaka, T. T.; Nakanaga, T. J. Phys. Chem. 1976, 80, 475.
(6) Tian, Y.; Umemura, J.; Takenaka, T. Langmuir 1988, 4, 1064.
(7) Takenaka, T. Chem. Phys. Lett. 1978, 55, 515.
Conclusions
With the use of TIR SFG the first vibrational spectrum of
the simple alkyl surfactant sodium dodecyl sulfate at the D2O-
CCl4 interface has been obtained. By performing these experi-
ments in a TIR geometry, the sensitivity of the surface selective
technique of SFG is increased considerably. Infrared and
Raman spectra for similar compounds were used to assign the
C-H vibrational resonances of the SF spectra of SDS. Spectral
assignments were further verified by deuteration studies. The
SF spectra of sodium hexadecyl sulfate was compared with
sodium hexadecyl-d3 sulfate in order to determine the contribu-
tion from the terminal methyl group to the SF spectra of SDS.
Deuteration results reveal that, unlike monolayers adsorbed to
solid substrates, minimal contribution from the methyl Fermi
resonance is observed.
(8) Grubb, S. G.; Kim, M. W.; Rasing, T.; Shen, Y. R. Langmuir 1988,
4, 452.
(9) Higgins, D. A.; Corn, R. M. J. Phys. Chem. 1993, 97, 489.
(10) Higgins, D. A.; Naujok, R. R.; Corn, R. M. Chem. Phys. Lett. 1993,
213, 485.
(11) Nakanaga, T.; Takenaka, T. J. Phys. Chem. 1977, 81, 645.
(12) Kovaleski, J. M.; Wirth, M. J. J. Phys. Chem. 1995, 12, 4091.
(13) van Buuren, A. R.; Marrink, S.-J.; Berendsen, H. J. C. J. Phys.
Chem. 1993, 97, 9206.
(14) Conboy, J. C.; Daschbach, J. L.; Richmond, G. L. Appl. Phys. A
1994, 42, 237.
(15) Conboy, J. C.; Richmond, G. L. J. Phys. Chem. 1994, 98, 9688.
(16) Shen, Y. R. Nature 1989, 337, 519.
(17) Hunt, J. H.; Guyot-Sionnest, P.; Shen, Y. R. Chem. Phys. Lett. 1987,
133, 189.
(18) Guyot-Sionnest, P.; Hunt, J. H.; Shen, Y. R. Phys. ReV. Lett. 1987,
59, 1597.
TIR SFG has allowed for the investigation of conformational
and orientational ordering of SDS at the D2O-CCl4 interface.
The ratio of the methyl/methylene intensity as a function of
bulk concentration is used as a measure of chain conformation.
By normalizing consecutive spectra to the symmetric methyl
peak to correct for concentration effects, a decrease in the
methylene intensity is observed, suggesting a reduction in
gauche defects. This finding is consistent with increased
ordering with increased surface coverage. The surface pressure
and the methyl/methylene intensity ratio both reach a constant
value at 2.0 mM, which is taken as the formation of a full
monolayer.
Polarization studies were also performed in order to ascertain
the orientation of SDS at the D2O-CCl4 interface. These SFG
studies suggest that the C3V symmetry axis of the terminal methyl
group is oriented primarily along the surface normal for all
concentrations examined. The CH2 backbone displays pro-
nounced resonances due to the symmetric and asymmetric
methylene modes at 2848 and 2925 cm-1, respectively. The
large intensity observed for these resonances is the result of
the relaxation of the local symmetry constraint for the CH2
vibrations by the introduction of gauche defects.
(19) Bain, C. D. J. Chem. Soc., Faraday Trans. 1995, 91, 1281.
(20) Miragliotta, J.; Polizzotti, R. S.; Rabinowitz, P.; Cameron, S. D.;
Hall, R. B. Chem. Phys. 1990, 143, 123.
(21) Hall, R. B.; Russell, J. N.; Miragliotta, J.; Rabinowitz, P. R. Springer
Ser. Surf. Sci. 1990, 22 (Chem. Phys. Solid Surf. 8), 87.
(22) Hatch, S. R.; Polizzotti, R. S.; Dougal, S.; Rabinowitz, P. J. Vac.
Sci. Technol. 1993, 11, 2232.
(23) Akamatsu, N.; Domen, K.; Hirose, C.; Onishi, T.; Shimizu, H.;
Masutani, K. Chem. Phys. Lett. 1991, 181, 175.
(24) Hirose, C. Y.; Yamamoto, H.; Akamatsu, N.; Domen, K. J. Phys.
Chem. 1993, 97, 10064.
(25) Wolfrum, K.; Graener, H.; Laubereau, A. Chem. Phys. Lett. 1993,
213, 41.
(26) Wolfrum, K.; K.; Lobau, J.; Laubereau, A. Appl. Phys. A 1994,
59, 605.
(27) Zhang, D.; Gutow, J.; Eisenthal, K. B. J. Phys. Chem. 1994, 98,
13729.
(28) Harris, A. L.; Levinos, N. J.; Rothberg, L.; Dobois, L. H.; Dhar,
L.; Shane, S. F.; Morin, M. J. Electron Spectrosc. Relat. Phenom. 1990,
54-55, 5.
(29) Harris, A. L.; Rothberg, L. J. Chem. Phys. 1991, 94, 2449.
(30) Harris, A. L.; Rothberg, L.; Dhar, L.; Levinos, N. J.; Dubois, L.
H. J. Chem. Phys. 1991, 94, 2438.
(31) Messmer, M. C.; Conboy, J. C.; Richmond, G. L. J. Am. Chem.
Soc. 1995, 117, 8039.
(32) Shen, Y. R. The Principles of Nonlinear Optics; Wiley: New York,
1984.
(33) Dick, B.; Gierulski, A.; Marowsky, G. Appl. Phys. B 1987, 42,
Historically, an investigation of molecular species adsorbed
at a liquid/liquid phase boundary by conventional vibrational
spectroscopy has been inaccessible. Complications arising from
distinguishing between the spectral contributions of interfacial
molecules and those in the more pervasive bulk have presented
a formidable experimental challenge. These limitations have
been overcome by the use of the surface selective technique of
TIR SFG. The results reported here have far-reaching implica-
tions for the investigation of adsorption and transport properties
at the interface between two immiscible liquids by vibrational
spectroscopy.
237.
(34) Bloembergen, N.; Pershan, P. S. Phys. ReV. 1962, 128, 606.
(35) Bloembergen, N. Opt. Acta 1966, 13, 311.
(36) Bloembergen, N.; Simmon, H. J. Phys. ReV. 1969, 181, 1261.
(37) Fieser and Fieser; Reagents for Organic Synthesis; Wiley: New
York, 1967.
(38) Snyder, R. G.; Hsu, S. L.; Krimm, S. Spectrochim. Acta 1978, 34A,
395.
(39) Snyder, R. G.; Strauss, H. L.; Elliger, C. A. J. Phys. Chem. 1982,
86, 5145.
(40) MacPhail, R. A.; Strauss, H. L.; Snyder, R. G.; Elliger, C. A. J.
Phys. Chem. 1984, 88, 334.
(41) Cates, D. A.; Strauss, H. L.; Snyder, R. G. J. Phys. Chem. 1994,
98, 4482.
(42) Snyder, R. G.; Scherer, J. R. J. Chem. Phys. 1979, 71, 3221.
(43) Aljibury, A. L.; Snyder, R. G.; Strauss, H. L.; Raghavachari, K. J.
Chem. Phys. 1986, 84, 6873.
(44) Bain, C. D.; Davies, P. B.; Ong, T. H.; Ward, R. N.; Brown, M. A.
Langmuir 1991, 7, 1563.
(45) Bain, C. D. Langmuir 1994, 10, 2060.
(46) Ward, R. N.; Duffy, D. C.; Davies, P. B.; Bain, C. D. J. Phys.
Chem. 1994, 98, 8536.
(47) Guyot-Sionest, P.; Superfine, R.; Hunt, J. H.; Shen, Y. R. Chem.
Phys. Lett. 1988, 144, 1.
Acknowledgment. The authors gratefully acknowledge the
skilled assistance of Jennifer Gage and the facilities provided
by Professor Bruce Branchaud for the synthesis of hexadecyl-
d3 sulfate, sodium salt. In addition, the authors express
appreciation to Ted Hinke for the construction of the cell. The
starting material palmitic-d3 acid was graciously provided by
Professor Frederick Dahlquist. Funding is gratefully acknowl-
edged from NSF (CHE 9416856) and the Office of Naval
Research.
(48) Akamatsu, N.; Domen, K.; Hirose, C. J. Phys. Chem. 1993, 97,
10070.
(49) Sefler, G. A.; Du, Q.; Miranda, P. B.; Shen, Y. R. Chem. Phys.
Lett. 1995, 235, 347.
(50) Golden, W. G.; Snyder, C. D.; Smith, B. J. Phys. Chem. 1982, 86,
4675.
(51) Roberts, G. Langmuir-Blodgett Films; Plenum Press: New York,
1990.
(52) Goto, Y.; Akamatsu, N.; Domen, K.; Hirose, C. J. Phys. Chem.
1995, 99, 4086.
References and Notes
(1) Hiemenz, P. C. Principles of Colloid and Surface Chemistry; Marcel
Dekker: New York, 1977; Vol. 4.
(2) Myers, D. Surface, Interfaces and Colloids; Principles and Ap-
plications; VCH: New York, 1991.
(3) Wirth, M. J.; Burbage, J. D. J. Phys. Chem. 1992, 96, 9022.
(4) Piasecki, D. A.; Wirth, M. J. J. Phys. Chem. 1993, 97, 7700.
JP953616X