DOI: 10.1039/C5CC01152C
Page 3 of 4
ChemComm
(LSVs) of MnO nanocrystals for OERs in KOH solution (0.1 M)
exposed lattice facets of MnO nanocrystals. The MnO (100) planes
with higher adsorption energy of O species could largely promote
the electrocatalytic activity for the OER and the ORR. Our results
may illustrate a new paradigm for developing highly active and
with a sweep rate of 5 mV s-1. MnO polypods with exposed (100)
planes showed a superior activity with an overpotential (η) of 0.58
V at a current density (j) of 10 mA cm-2, much lower than that of
5
other MnO nanocrystals. At η=0.35 V, the mass activity for MnO 70 cost-effective electrocatalysts.
polypods catalyst was found to be 17.75 A g-1. The turnover fre-
quency (TOF) of MnO polypods reached 4.19×10-4 s-1 (see Table
Acknowledgements
S1), comparable with the reported best values of MnOx poly-
JH thanks the financial support of startup funds from the Universi-
ty of Connecticut. SLS acknowledges support of the US Depart-
75 ment of Energy, Office of Basic Energy Sciences, Division of
Chemical, Biological and Geological Sciences under grant DE-
FG02-86ER13622.A000. This work was partially supported by the
Green Emulsions Micelles and Surfactants (GEMS) Center.
morphs.5a,f,8a,9 MnO octahedra with (111) dominated surface exhib-
10 ited a much lower activity and current densities, nearly overlapped
with that of commercial MnO catalysts. MnO nanoflowers with
multi-exposed planes displayed a moderate catalytic activity with a
TOF of 1.32×10-4 s-1. Tafel plots derived from LSV curves are
given in Fig 3b. Tafel slopes of MnO polypods and nanoflowers
15 are 149 and 169 mV/dec, respectively. The lower Tafel slopes
indicate that the OER of polypods and nanoflowers is kinetically
more favorable compared to that of octahedra. Fig 3c shows the
Nyquist plot of the electrochemical impedance spectra (EIS) of
MnO nanocrystals. The charge-transfer resistance value is inverse-
20 ly proportional to the electron transfer rate. MnO polypods and
nanoflowers have Rct of 256 and 275 Ω, respectively, lower than
that of MnO octahedra and commercial MnO. This result is in good
agreement with their OER activities.
80 Notes and references
a
Department of Chemistry, b Department of Materials Science and Engi-
neering and Institute of Materials Science, University of Connecticut,
Storrs, CT 06269 USA.
E-mail: steven.suib@uconn.edu (SS); jie.he@uconn.edu (JH)
85
† Electronic Supplementary Information (ESI) available: Experimental
details, characterization, computational details, and additional results for
electrochemical studies. See DOI: 10.1039/b000000x/
ORR activity of MnO nanocrystals was also examined by cy-
25 clic voltammetry (CV) in 0.1 M of KOH solution. In argon-
saturated solution, the voltammogram without an obvious peak was
observed (Fig S14); while, a well-defined cathodic oxygen reduc-
tion peak with a high current density appeared when the electrolyte
was saturated with O2, indicating MnO nanocrystals are electrocat-
30 alytically active for the ORR. The ORR catalytic results of MnO
nanocrystals are given in Fig 3d. MnO polypods, again, displayed a
superior activity with a half-wave potential of 0.77 V, only 80 mV
lower than that of Pt/C catalysts.5f The diffusion-limiting current of
MnO polypods reaches ~5.0 mA cm-2, higher than MnO nanoflow-
35 ers with 3.8 mA cm-2 and octahedra with 3.1 mA cm-2, indicating
that the preferentially exposed (100) planes indeed improved the
ORR activity as well. As compared to other reported MnOx cata-
lysts for ORRs, e.g. MnOx film reported by Gorlin et al. with a
potential of 0.73 V5f and α-MnO2 reported by Meng et al. with a
40 potential of 0.76 V at J=-3 mA cm-2,5a MnO polypods have some
of the lowest overpotentials for the ORR. The stability of MnO
ploypods for the ORR was also studied by current-time (i-t) chron-
oamperometric response at a potential of 0.66 V (vs. RHE) (Figure
S17). MnO ploypods maintained 80% of its original activity after
45 an hour. Furthermore, the overall oxygen electrode activity
(ΔE=EOER-EORR) is as low as 1.02 V, smaller than that of Ir/C and
Pt/C,3,4,5f suggesting MnO polypods as a superior bifunctional elec-
trocatalyst for OER/ORR.
90 (1) (a) Voiry, D.; Yamaguchi, H.; Li, J.; Silva, R.; Alves, D. C. B.; Fujita,
T.; Chen, M.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Nat. Mater.
2013, 12, 850. (b) Ji, X.; Lee, K. T.; Holden, R.; Zhang, L.; Zhang, J.;
Botton, G. A.; Couillard, M.; Nazar, L. F. Nat. Chem. 2010, 2, 286. (c)
Liang, Y.; Li, Y.; Wang, H.; Zhou, J.; Wang, J.; Regier, T.; Dai, H. Nat.
95 Mater. 2011, 10, 780.
(2) (a) Bing, Y.; Liu, H.; Zhang, L.; Ghosh, D.; Zhang, J. Chem. Soc. Rev.
2010, 39, 2184. (b) Zhang, H.; Jin, M.; Xia, Y. Chem. Soc. Rev. 2012, 41,
8035. (c) Guo, S.; Zhang, S.; Sun, S. Angew. Chem. Int. Ed. 2013, 52, 8526.
(d) Guo, S.; Zhang, X.; Zhu, W.; He, K.; Su, D.; Mendoza-Garcia, A.; Ho,
100 S. F.; Lu, G.; Sun, S. J. Am. Chem. Soc. 2014, 136, 15026.
(3) (a) Koenigsmann, C.; Santulli, A. C.; Gong, K.; Vukmirovic, M. B.;
Zhou, W.-p.; Sutter, E.; Wong, S. S.; Adzic, R. R. J. Am. Chem. Soc. 2011,
133, 9783. (b) Zhang, S.; Zhang, X.; Jiang, G.; Zhu, H.; Guo, S.; Su, D.;
Lu, G.; Sun, S. J. Am. Chem. Soc. 2014, 136, 7734. (c) Strasser, P.; Koh, S.;
105 Anniyev, T.; Greeley, J.; More, K.; Yu, C.; Liu, Z.; Kaya, S.; Nordlund, D.;
Ogasawara, H.; Toney, M. F.; Nilsson, A. Nat. Chem. 2010, 2, 454.
(4) Reier, T.; Oezaslan, M.; Strasser, P. ACS Catal. 2012, 2, 1765.
(5) (a) Meng, Y.; Song, W.; Huang, H.; Ren, Z.; Chen, S.-Y.; Suib, S. L. J.
Am. Chem. Soc. 2014, 136, 11452. (b) Indra, A.; Menezes, P. W.;
110 Zaharieva, I.; Baktash, E.; Pfrommer, J.; Schwarze, M.; Dau, H.; Driess, M.
Angew. Chem. Int. Ed. 2013, 52, 13206. (c) Najafpour, M. M.; Ehrenberg,
T.; Wiechen, M.; Kurz, P. Angew. Chem. Int. Ed. 2010, 49, 2233. (d)
Boppana, V. B. R.; Jiao, F. Chem. Commun. 2011, 47, 8973. (e) Iyer, A.;
Del-Pilar, J.; King’ondu, C. K.; Kissel, E.; Garces, H. F.; Huang, H.; El-
115 Sawy, A. M.; Dutta, P. K.; Suib, S. L. J. Phys. Chem. C 2012, 116, 6474.
(f) Gorlin, Y.; Jaramillo, T. F. J. Am. Chem. Soc. 2010, 132, 13612. (g)
Kuo, C. H.; Li, W.; Pahalagedara, L.; El‐Sawy, A. M.; Kriz, D.; Genz, N.;
Guild, C.; Ressler, T.; Suib, S. L.; He, J. Angew. Chem. Int. Ed. 2015, 54,
2345. (h) Huynh, M.; Bediako, D. K.; Nocera, D. G. J. Am. Chem. Soc.
120 2014, 136, 6002. (i) Jiao, F.; Frei, H. Chem. Commun. 2010, 46, 2920.
(6) Suib, S. L. Acc. Chem. Res. 2008, 41, 479.
For MnO (100) and (111) crystal planes, the (100) planes with
50 mixed Mn2+ and O2 ions have a lower surface energy; while, the
−
(111) planes are polar surfaces consisting of alternating layers of
Mn2+ and O2 ions generating an electrostatic dipole field perpen-
−
(7) (a) Narayanaswamy, A.; Xu, H.; Pradhan, N.; Peng, X. Angew. Chem.
Int. Ed. 2006, 45, 5361. (b) Ould-Ely, T.; Prieto-Centurion, D.; Kumar, A.;
Guo, W.; Knowles, W. V.; Asokan, S.; Wong, M. S.; Rusakova, I.; Lüttge,
125 A.; Whitmire, K. H. Chem. Mater. 2006, 18, 1821. (c) Zitoun, D.; Pinna,
N.; Frolet, N.; Belin, C. J. Am. Chem. Soc. 2005, 127, 15034.
(8) (a) Kim, D.; Lee, N.; Park, M.; Kim, B. H.; An, K.; Hyeon, T. J. Am.
Chem. Soc. 2008, 131, 454. (b) Cheon, J.; Kang, N.-J.; Lee, S.-M.; Lee, J.-
H.; Yoon, J.-H.; Oh, S. J. J. Am. Chem. Soc. 2004, 126, 1950. (c) Liang, X.;
130 Gao, L.; Yang, S.; Sun, J. Adv. Mater. 2009, 21, 2068.
(9) Zaharieva, I.; Chernev, P.; Risch, M.; Klingan, K.; Kohlhoff, M.;
Fischer, A.; Dau, H. Energy Environ. Sci. 2012, 5, 7081.
(10)(a) Lima, F. H. B.; Calegaro, M. L.; Ticianelli, E. A. Electrochim. Acta
2007, 52, 3732. (b) Mao, L.; Zhang, D.; Sotomura, T.; Nakatsu, K.;
135 Koshiba, N.; Ohsaka, T. Electrochim. Acta 2003, 48, 1015.
dicular to the surface. To gain further insight into the correlation
between OER/ORR activities and the exposed crystal planes of the
55 MnO nanocrystals, adsorption energies of O species, e.g. OH- and
O2 have been estimated for different MnO crystal planes (Table S2)
using density functional theory. The adsorption of O species is
known as a rate-determining step for ORRs/OERs.10 In comparison
with (111) planes, the MnO (100) planes are highly exothermic for
60 OH- and O2 adsorption. The large exothermic interaction may also
be understood in terms of the unsaturated coordination on MnO
(100) planes.
In summary, 3-D complex anisotropic MnO nanocrystals were
demonstrated as superior bifunctional electrocatalysts. Their elec-
65 trocatalytic activity for OERs/ORRs was strongly correlated with