Journal of the American Chemical Society
Communication
ACKNOWLEDGMENTS
■
This work was supported by the Global Frontier R&D Program
by the Center for Multiscale Energy Systems (2011-0031566),
WCU program (R31-2008-000-10071-0), Industrial Core Grant
(
10035274), and NRF grant (2012-046191) funded by the
Korea government (MEST).
REFERENCES
■
(
1) (a) Semonin, O. E.; Luther, J. M.; Choi, S.; Chen, H. Y.; Gao, J.;
Nozik, A. J.; Beard, M. C. Science 2011, 334, 1530. (b) Sargent, E. H. Nat.
Photon. 2009, 3, 325. (c) Luther, J. M.; Law, M.; Beard, M. C.; Song, Q.;
Reese, M. O.; Ellingson, R. J.; Nozik, A. J. Nano Lett. 2008, 8, 3488.
(2) Shockley, W.; Queisser, H. J. J. Appl. Phys. 1961, 32, 510.
(3) Ip, A. H.; Thon, S. M.; Hoogland, S.; Voznyy, O.; Zhitomirsky, D.;
Debnath, R.; Levina, L.; Rollny, L. R.; Carey, G. H.; Fischer, A.; kemp, K.
W.; Kramer, I. J.; Ning, Z.; Labelle, A. J.; Chou, K. W.; Amassian, A.;
Sargent, E. H. Nat. Nanotechnol. 2012, 7, 577.
Figure 4. Pb/S ratio of octahedral and cuboctahedral PbS QD models as
a function of diameter, compared with the XPS data. The (111)-only
octahedral QDs show a deviation from experimental data at D ≈ 3 nm.
Proposed QD models are shown in the inset data, marked with blue
circle.
(
4) (a) Sykora, M.; Koposov, A. Y.; McGuire, J. A.; Schulze, R. K.;
Tretiak, O.; Pietryga, J. M.; Klimov, V. I. ACS Nano 2010, 4, 2021.
b) Moreels, I.; Fritzinger, B.; Martins, J. C.; Hens, Z. J. Am. Chem. Soc.
008, 130, 15081.
5) (a) Moreels, I.; Justo, Y.; De Geyter, B.; Haustraete, K.; Martins, J.
(
2
(
C.; Hens, Z. ACS Nano 2011, 5, 2004. (b) Tang, J.; Brzozowski, L.;
Barkhouse, D. A. R.; Wang, X.; Debnath, R.; Wolowiec, R.; Palmiano, E.;
Levina, L.; Pattantyus-Abraham, A. G.; Jamakosmanovic, D.; Sargent, E.
H. ACS Nano 2010, 4, 869.
(6) (a) Hines, M. A.; Scholes, G. D. Adv. Mater. 2003, 15, 1844.
(b) Lin, W.; Fritz, K.; Guerin, G.; Bardajee, G. R.; Hinds, S.;
Sukhovatkin, V.; Sargent, E. H.; Scholes, G. D.; Winnik, M. A. Langmuir
Note that the proposed shape of QDs only represents the
ensemble-averaged particle with the corresponding size because
of the softness of PbS; thus the shape is less sharply defined than
16
in “magic-sized clusters” of rather hard CdSe.
In solution, the self-passivated semiconducting (100) surface
may weakly interact with solvent molecules through the van der
Waals-type interaction. On the other hand, the chemically
passivated (111) surface will be mostly inert to other molecules.
When cuboctahedral QDs are exposed to air, the unprotected
2
008, 24, 8215. (c) Abel, K. A.; Shan, J.; Boyer, J.; Harris, F.; Veggel, F.
C. J. M. Chem. Mater. 2008, 20, 3794.
7) Baik, S. J.; Kim, K.; Lim, K. S.; Jung, S. M.; Park, Y. C.; Han, D. G.;
Lim, S.; Yoo, S.; Jeong, S. J. Phys. Chem. C 2011, 115, 607.
8) Tang, J.; Liu, H.; Zhitomirsky, D.; Hoogland, S.; Wang, X.;
Furukawa, M.; Levina, L.; Sargent, E. H. Nano Lett. 2012, 12, 4889.
9) (a) Hughes, B. K.; Ruddy, D. A.; Blakburn, J. L.; Smith, D. K.;
(
(100) surface may undergo irreversible oxidation. This may be
(
the origin of the air instability, blue shifts of the absorption edge,
and p-type doping for large-size PbS QDs. In contrast, the
octahedral QDs with full chemical passivation have no room for
surface oxidation. This is why the ultrasmall QDs are so stable in
ambient conditions. Careful replacement of oleate with a less
hindered ligand during or after the synthesis will lead to
atomically and microscopically surface-controlled air-stable PbS
QDs.
In conclusion, we successfully synthesized air-stable ultrasmall
PbS QDs. Detailed chemical analyses and theoretical simulations
suggest that oleate-capped octahedral small-size QDs are very
stable in air, while cuboctahedral large-size QDs truncated with
the unpassivated (100) surface are rather unstable against surface
oxidation. This microscopic understanding of QD surface
chemistry, derived exclusively from ultrasmall PbS QDs, may
pave the way to next-generation low-cost, high-efficiency QD
photovoltaics.
(
Bergren, M. R.; Nozik, A. J.; Johnson, J. C.; Beard, M. C. Nano Lett.
2012, 6, 5498. (b) Chappell, H. E.; Hughes, B. K.; Beard, M. C.; Nozik,
A. J.; Johnson, J. C. J. Phys. Chem. Lett. 2011, 2, 889.
(
10) (a) Bae, W. K.; Joo, J.; Padilha, L. A.; Won, J.; Lee, D. C.; Lin, Q.;
Koh, W.; Luo, H.; Klimov, V. I.; Pietryga, J. M. J. Am. Chem. Soc. 2012,
34, 20160. (b) Luther, J. M.; Law, M.; Song, Q.; Perkins, C. L.; Beard,
1
M. C.; Nozik, A. J. ACS Nano 2008, 2, 271. (c) Peterson, J. J.; Krauss, T.
D. Phys. Chem. Chem. Phys. 2006, 8, 3851.
(11) (a) Beard, M. C.; Midgett, A. G.; Law, M.; Semonin, O. E.;
Ellingson, R. J.; Nozik, A. J. Nano Lett. 2009, 9, 836. (b) Cho, K. S.;
Talapin, D. V.; Gaschler, W.; Murray, C. B. J. Am. Chem. Soc. 2005, 127,
7140. (c) Bealing, C. R.; Baumgardner, W. J.; Choi, J. J.; Hanrath, T.;
Hennig, R. G. ACS Nano 2012, 6, 2118.
(12) (a) Kim, Y.-H.; Heben, M. J.; Zhang, S. B. Phys. Rev. Lett. 2004, 92,
1
76102. (b) Feng, J.; Ding, S.-Y.; Tucker, M. P.; Himmel, M. E.; Kim, Y.-
H.; Zhang, S. B.; Keyes, B. M.; Rumbles, G. Appl. Phys. Lett. 2005, 86,
33108. (c) Ko, S.-M.; Kim, J.-H.; Ko, Y.-H.; Chang, Y. H.; Kim, Y.-H.;
Yoon, J.; Lee, J. Y.; Cho, Y.-H. Cryst. Growth Des. 2012, 12, 3838.
13) The definition of surface energy allows negative values for certain
low-energy surfaces.
14) Ma, J.; Jia, Y.; Song, Y.; Liang, E.; Wu, L.; Wang, F.; Wang, X.; Hu,
0
ASSOCIATED CONTENT
Supporting Information
Details of synthesis, characterization, and DFT simulation, and
■
(
*
S
(
X. Surf. Sci. 2004, 551, 91.
(15) Li, B.; Michaelides, A.; Scheffler, M. Phys. Rev. B 2007, 76, 075401.
(16) Harrell, S. M.; McBride, J. R.; Rosenthal, S. J. Chem. Mater. 2013,
AUTHOR INFORMATION
DOI: 10.1021/cm303318f.
Author Contributions
⊥
H.C. and J.-H.K. contributed equally.
Notes
The authors declare no competing financial interest.
5
281
dx.doi.org/10.1021/ja400948t | J. Am. Chem. Soc. 2013, 135, 5278−5281