JOURNAL OF
POLYMER SCIENCE
WWW.POLYMERCHEMISTRY.ORG
RAPID COMMUNICATION
green copper complex was removed by passing the reaction
mixture through basic alumina column and the brown prod-
uct was isolated by precipitation into hexane (yield 5 75%).
15 A. K. Shaytan, E.-K. Schillinger, P. G. Khalatur, E. Mena-
Osteritz, J. Hentschel, H. G. B o€ rner, P. B a€ uerle, A. R. Khokhlov,
ACS Nano 2011, 5, 6894–6909.
1
6 K. Matyjaszewski, J. Xia, Chem. Rev. 2001, 101, 2921–2990.
7 Y. Zhang, Y. Wang, C.-H. Peng, M. Zhong, W. Zhu, D.
1
Synthesis of PMMA-b-Ptyr Conjugate
Konkolewicz, K. Matyjaszewski, Macromolecules 2012, 45, 78–86.
Typically, tyrosine–NCA (0.16 g, 0.775 mmol) (Supporting
Information ESI) was dissolved in 10 mL of dry DMF in two-
neck round-bottomed flask. Sequentially, PMMA-NH2-I
1
8 S. Y. Kim, C. F. Zukoski, Macromolecules 2013, 46, 6634–
6
643.
1
9 T. Smart, H. Lomas, M. Massignani, M. V. Flores-Merino, L.
(
120.6 mg) was dissolved in 2 mL of dry DMF and was
R. Perez, G. Battaglia, Nano Today 2008, 3, 38–46.
injected to the tyrosine–NCA solution at ice-bath via syringe.
The reaction mixture was degassed via three freeze–pump–
thaw cycles and stirred for 3 days at room temperature. At
the end of complete reaction, the brown product was iso-
lated by precipitation into diethyl ether and dried in vacuum
oven at 35 8C (yield 5 50%). Two other PMMA-b-Ptyr conju-
gates were also prepared by varying PMMA and Ptyr compo-
sition as summarized in Table 1. The synthesized and
purified PMMA-b-Ptyr conjugates were characterized by
NMR, FTIR, and GPC analyses.
2
6
0 H. K u€ hnle, H. G. B o€ rner, Angew. Chem. Int. Ed. 2009, 48,
431–6434.
2
1 D. J. Siegwart, J. K. Oh, K. Matyjaszewski, Prog. Polym. Sci.
2012, 37, 18–37.
22 C. Cummings, H. Murata, R. Koepsel, A. J. Russell,
Biomaterials 2013, 34, 7437–7443.
23 H. R. Kricheldorf, Angew. Chem. Int. Ed. 2006, 45, 5752–
784.
5
2
2
4 T. J. Deming, Adv. Mater. 1997, 9, 299–311.
5 D. J. Adams, D. Atkins, A. I. Cooper, S. Furzeland, A.
Trewin, I. Young, Biomacromolecules 2008, 9, 2997–3003.
6 T. K. Paira, S. Banerjee, M. Raula, A. Kotal, S. Si, T. K.
Mandal, Macromolecules 2010, 43, 4050–4061.
7 R. Trzcinska, D. Szweda, S. Rangelov, P. Suder, J.
2
2
ACKNOWLEDGMENTS
Silberring, A. Dworak, B. Trzebicka, J. Polym. Sci. Part A:
Polym. Chem. 2012, 50, 3104–3115.
A. Saha sincerely thanks CSIR, India, for providing fellowship.
This research is supported by grants from the CSIR, New Delhi,
India. Thanks are also owing to the partial financial support
from BRNS, India.
28 N. Hadjichristidis, H. Iatrou, M. Pitsikalis, G. Sakellariou,
Chem. Rev. 2009, 109, 5528–5578.
29 H.-A. Klok, J. F. Langenwalter, S. Lecommandoux,
Macromolecules 2000, 33, 7819–7826.
3
0 C.-J. Huang, F.-C. Chang, Macromolecules 2008, 41, 7041–7052.
REFERENCES AND NOTES
31 A. Nagai, D. Sato, J. Ishikawa, B. Ochiai, H. Kudo, T. Endo,
Macromolecules 2004, 37, 2332–2334.
1
2
J. C. M. Van Hest, Polym. Rev. 2007, 47, 63–92.
3
2 Y.-S. Lu, Y.-C. Lin, S.-W. Kuo, Macromolecules 2012, 45,
G. F. Chimonides, A. A. Sohdi, M. R. Khaleghi, C. R. Hurley,
6
547–6556.
D. J. Adams, P. D. Topham, J. Polym. Sci. Part A: Polym.
Chem. 2013, 51, 4853–4859.
3
4
3 G. Fuks, R. Mayap Talom, F. Gauffre, Chem. Soc. Rev. 2011,
0, 2475–2493.
3
2
J. Y. Shu, B. Panganiban, T. Xu, Annu. Rev. Phys. Chem.
013, 64, 631–657.
3
4 T.-B. Ren, W.-J. Xia, H.-Q. Dong, Y.-Y. Li, Polymer 2011, 52,
3
580–3586.
4
J. D. Hartgerink, E. Beniash, S. I. Stupp, Science 2001, 294,
3
5 E. Amado, R. Sch o€ ps, W. Brandt, J. Kressler, ACS Macro.
1684–1688.
Lett. 2012, 1, 1016–1019.
5
6
7
8
H. G. Borner, H. Schlaad, Soft Matter 2007, 3, 394–408.
J.-F. Lutz, H. G. Borner, Prog. Polym. Sci. 2008, 33, 1–39.
H.-A. Klok, Macromolecules 2009, 42, 7990–8000.
3
6 J. Hentschel, H. G. B o€ rner, J. Am. Chem. Soc. 2006, 128,
1
4142–14149.
3
7 T. K. Paira, S. Banerjee, T. K. Mandal, J. Polym. Sci. Part A:
H. Otsuka, Y. Nagasaki, K. Kataoka, Curr. Opin. Colloid
Polym. Chem. 2012, 50, 2130–2141.
Interface Sci. 2001, 6, 3–10.
J. P. Jung, J. L. Jones, S. A. Cronier, J. H. Collier,
Biomaterials 2008, 29, 2143–2151.
0 A. V. Ambade, E. N. Savariar, S. Thayumanavan, Mol.
Pharm. 2005, 2, 264–272.
1 B. Apostolovic, S. P. E. Deacon, R. Duncan, H.-A. Klok,
Biomacromolecules 2010, 11, 1187–1195.
2 H. Dong, N. Dube, J. Y. Shu, J. W. Seo, L. M. Mahakian, K.
W. Ferrara, T. Xu, ACS Nano 2012, 6, 5320–5329.
3 S. Lecommandoux, M.-F. Achard, J. F. Langenwalter, H.-A.
Klok, Macromolecules 2001, 34, 9100–9111.
4 E.-K. Schillinger, E. Mena-Osteritz, J. Hentschel, H. G.
3
2
8 W. Agut, D. Taton, S. B. Lecommandoux, Macromolecules
007, 40, 5653–5661.
9
3
9 H.-A. Klok, H. Schlaad, Eds., In Peptide Hybrid Polymers;
1
Springer: Berlin, Heidelberg, 2006; pp 53–73.
0 M. G. J. ten Cate, N. Severin, H. G. B o€ rner, Macromolecules
2006, 39, 7831–7838.
1 R. Erhardt, M. Zhang, A. B o€ ker, H. Zettl, C. Abetz, P.
4
1
4
1
Frederik, G. Krausch, V. Abetz, A. H. E. M u€ ller, J. Am. Chem.
Soc. 2003, 125, 3260–3267.
1
42 X. Guo, L. Liu, W. Wang, J. Zhang, Y. Wang, S.-H. Yu,
CrystEngComm 2011, 13, 2054–2061.
1
43 M. Biswas, A. Saha, M. Dule, T. K. Mandal, J. Phys. Chem.
C 2014, 118, 22156–22165.
B o€ rner, P. B a€ uerle, Adv. Mater. 2009, 21, 1562–1567.
WWW.MATERIALSVIEWS.COM
JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY 2015, 53, 2313–2319
2319