2546
T. KASHIWAGI et al.
diastereoisomers, cis- and trans-epoxy-(S)-carvomen-
thane, as a colorless oil.
1:0, CHCl3).
22
(1R,4S)-p-menth-2-en-1-ol (7). ½ꢀꢂD þ25:2ꢁ (c ¼
After displacing the air with N2 gas, small pieces of
sodium (1.15 g, 50 mmol) were slowly added over 1 h
to 2-heptanol (13.0 g, 100 mmol) in the flask, and the
mixture stirred at 90 ꢁC until the sodium had completely
reacted. After 100 ml of diethylenglycol monomethyl
ether had been mixed with the solution, the mixture
was added dropwise to the epoxides (7.70 g in 100 ml of
diethylenglycol monomethyl ether) at 90 ꢁC under N2
gas. The reaction mixture was then stirred and heated at
140 ꢁC for 14 h. After cooling to room temperature, the
reactant was diluted with 100 ml of water and extracted
with hexane (110 ml ꢀ 3). The hexane layer was
successively washed with water, 1 N-HCl and saturat-
ed-aqueous NaCl, and dried over anhydrous Na2SO4.
After removing the solvent under reduced pressure, the
product was distilled under reduced pressure to give
2.32 g of mixture of (1S,4R)- and (1R,4R)-p-menth-2-
en-1-ol as a colorless oil, bp 120–137 ꢁC/23 mmHg. The
mixture (1.5 g) was chromatographed in a silica gel
(Wako C300) column eluted with 3% and 5% diethyl
ether in hexane to obtain 723 mg of (1S,4R)-p-menth-
2-en-1-ol and 663 mg of (1R,4R)-p-menth-2-en-1-ol as
colorless oils in respective yields of 12.1% and 11.4%.
1:0, CHCl3).
Acknowledgments
We thank Mr. Shoichi Saito, Forest Research and
Instruction Center of Yamagata Prefecture, and Mr.
Koichi Nunokawa, Forestry Research Institute of
Niigata Prefecture for their assistance with collecting
the logs.
References
1) Hijii, N., Kajimura, H., Urano, T., Kinuura, H., and Itami,
H., The mass mortality of oak trees induced by Platypus
quercivorus (Murayama) and Platypus calamus Blandford
(Coleoptera: Platypodidae)—The density and spatial
distribution of attack by the beetles—. J. Jpn. For. Soc.,
73, 471–476 (1991).
2) Kubono, T., and Ito, S., Raffaelea quercivora sp. nov.
associated with mass mortality of Japanese oak, and the
ambrosia beetle (Platypus quercivorus). Mycoscience, 43,
255–260 (2002).
3) Kuroda, K., Responses of Quercus sapwood to infection
with the pathogenic fungus of a new wilt disease vectored
by the ambrosia beetle Platypus quercivorus. J. Wood
Sci., 47, 425–429 (2001).
4) Ohya, W., and Kinuura, H., Close range sound commu-
nications of the oak platypodid beetle, Platypus querci-
vorus Murayama (Coleoptera: Platypodidae). J. Appl.
Zool., 36, 317–321 (2001).
5) Ueda, A., and Kobayashi, M., Aggregation of Platypus
quercivorus (Murayama) (Coleoptera: Platypodidae) on
oak logs bored by males of the species. J. For. Res., 6,
173–179 (2001).
6) Nakashima, T., Saito, S., Kobayashi, M., Kinuura, H.,
Tokoro, M., Kashiwagi, T., Tebayashi, S., and Kim, C.-S.,
Aggregation pheromone of the oak platypodid, Platypus
quercivorus (Murayama) (Coleoptera: Platypodidae).
Proceedings of 5th Asia-Pacific Congress of Entomology,
p. 89 (2005).
7) Albuquerque, M. R. J. R., Souza, E. B., Lins, M. U. D. S.,
Nogueura, N. A. P., Lemos, T. L. G., and Pessoa, E. R.,
Composition and antimicrobial activity of essential oil
from aerial parts of Baccharis trinervuis (Lam.) Pers.
Arkivoc, vi, 59–65 (2004).
8) Ciccio, J. F., and Gomez-Laurito, J., Volatile constituents
of the leaves of Siparuna thecaphora (Siparunaceae) from
Turrialba, Costa Rica. Rev. Biol. Trop., 50, 963–967
(2002).
22
(1S,4R)-p-menth-2-en-1-ol (4). ½ꢀꢂD ꢃ25:2ꢁ (c ¼
1:0, CHCl3). EIMS m=z (%): 154 (3), 139 (21), 136 (59),
134 (15), 121 (41), 119 (54), 111 (11), 105 (11), 94 (31),
93 (100), 92 (43), 91 (85), 84 (11), 83 (11), 81 (13), 80
(14), 79 (37), 78 (13), 77 (74), 71 (12), 69 (19), 67 (10),
65 (16), 55 (10), 53 (10). 1H-NMR (CDCl3) ꢁ: 5.60 (2H,
s, H-2 and 3), 1.93 (1H, dt, J ¼ 9:2 and 5.6, H-4), 1.84
(1H, ddd, J ¼ 12:4, 6.0 and 2.8, H-6a), 1.72 (3H, ddd,
J ¼ 13:2, 5.6 and 2.8, H-5a), 1.60 (1H, td, J ¼ 12:4 and
3.2, H-6b), 1.57 (1H, m, H-8), 1.36 (1H, dddd, J ¼ 13:2,
12.4, 9.2 and 3.2, H-5b), 1.21 (3H, s, H-7), 0.89 (3H, d,
J ¼ 6:8, H-9) 0.87 (3H, d, J ¼ 6:8, H-10). 13C-NMR
(CDCl3) ꢁ: 134.5 (d, C-2), 131.2 (d, C-3), 69.6 (s, C-1),
41.7 (d, C-4), 38.0 (t, C-6), 31.6 (d, C-8), 28.5 (q, C-7),
23.6 (t, C-5), 19.8 (q, C-9), 19.4 (q, C-10).
22
(1R,4R)-p-menth-2-en-1-ol (5). ½ꢀꢂD þ28:7ꢁ (c ¼
1:0, CHCl3). EIMS m=z (%): 154 (2),136 (16), 121 (11),
119 (14), 94 (20), 93 (100), 92 (17), 91 (32), 79 (23), 77
(36), 71 (11), 69 (13), 65 (11). 1H-NMR (CDCl3) ꢁ: 5.66
(2H, s, H-2 and 3), 1.79 (1H, m, H-4), 1.76 (H, m, H-6a),
1.59 (1H, m, H-8), 1.54 (1H, m, H-5a), 1.41 (1H, m,
H-6b), 1.38 (1H, m, H-5b), 1.21 (3H, s, H-7), 0.92 (3H,
d, J ¼ 6:8, H-9), 0.89 (3H, J ¼ 6:8, H-10). 13C-NMR
(CDCl3) ꢁ: 133.4 (d, C-2), 133.0 (d, C-3), 67.4 (s, C-1),
42.1 (d, C-4), 37.2 (t, C-6), 31.7 (d, C-8), 29.6 (q, C-7),
21.6 (t, C-5), 19.7 (q, C-9), 19.3 (q, C-10).
9) Adams, R. P., ‘‘Identification of Essential Oil Compo-
nents by Gas Chromatography/Quadrupole Mass Spec-
troscopy,’’ Allured Publishing Corporation, Illinois,
pp. 111–117 (2001).
(1S,4S)-p-menth-2-en-1-ol (6). ½ꢀꢂD ꢃ28:7ꢁ (c ¼
22