Published on Web 06/11/2008
Artificial DNA Made Exclusively of Nonnatural C-Nucleosides
with Four Types of Nonnatural Bases
Yasuhiro Doi, Junya Chiba,* Tomoyuki Morikawa, and Masahiko Inouye*
Graduate School of Pharmaceutical Sciences, UniVersity of Toyama, Sugitani 2630,
Toyama 930-0194, Japan
Received February 12, 2008; E-mail: chiba@pha.u-toyama.ac.jp; inouye@pha.u-toyama.ac.jp
Abstract: We describe a new class of DNA-like oligomers made exclusively of nonnatural, stable
C-nucleosides. The nucleosides comprise four types of nonnatural bases attached to a deoxyribose through
an acetylene bond with the ꢀ-configuration. The artificial DNA forms right-handed duplexes and triplexes
with the complementary artificial DNA. The hybridization occurs spontaneously and sequence-selectively,
and the resulting duplexes have thermal stabilities very close to those of natural duplexes. The artificial
DNA might be applied to a future extracellular genetic system with information storage and amplifiable
abilities.
Introduction
exceptions for entirely modified oligonucleotide analogues
composed of nonnatural bases and various sugars. Furthermore,
Apart from its biological significance, the beauty of the DNA
duplex structure has been inspiring chemists to create artificial
analogues in their own right. This type of research is primarily
motivated by pure scientific exploration and eventually directed
toward biomedical applications. Creation of the artificial
analogues is roughly categorized into the following two
modifications of natural DNA: the sugar-phosphodiester back-
bone and the Watson-Crick base pairing. The former is
represented by peptide nucleic acids (PNA),1 locked nucleic
acids (LNA),2 threo-furanosyl nucleic acids (TNA),3 and 2′,5′-
linked nucleic acids.4 These analogues usually possess natural
bases because of their potential use in antisense and antigene
strategies. On the other hand, examples of the latter are properly
aimed at their applications to nanotechnology,5 biotechnology,6
and chemical biology.7 Until recently, however, those analogues
have contained only one or a few nonnatural bases linked with
deoxyribose. Eschenmoser and co-workers8 reported notable
Kool and co-workers9 disclosed artificial duplexes in which all
of the natural base pairs are replaced by pairs of nonnatural
(5) For recent reports: (a) Heuberger, B. D.; Shin, D.; Switzer, C Org.
Lett. 2008, 10, 1091–1094. (b) Clever, G. H.; Kaul, C.; Carell, T.
Angew. Chem., Int. Ed. 2007, 46, 6226–6236. (c) Polonius, F.-A.;
Mu¨ller; J., Angew. Chem., Int. Ed. 2007, 46, 5602–5604. (d) Shin,
D.; Switzer, C. Chem. Commun. 2007, 4401–4403. (e) Clever, G. H.;
Carell, T. Angew. Chem., Int. Ed. 2007, 46, 250–253. (f) Tanaka, Y.;
Oda, S.; Yamaguchi, H.; Kondo, Y.; Kojima, C.; Ono, A. J. Am. Chem.
Soc. 2007, 129, 244–245. (g) Tanaka, K.; Clever, G. H.; Takezawa,
Y.; Yamada, Y.; Kaul, C.; Shionoya, M.; Carell, T. Nat. Nanotechnol.
2006, 1, 190–194. (h) Miyake, Y.; Togashi, H.; Tashiro, M.;
Yamaguchi, H.; Oda, S.; Kudo, M.; Tanaka, Y.; Kondo, Y.; Sawa,
R.; Fujimoto, T.; Machinami, T.; Ono, A. J. Am. Chem. Soc. 2006,
128, 2172–2173. (i) Clever, G. H.; Polborn, K.; Carell, T. Angew.
Chem., Int. Ed. 2005, 44, 7204–7208. (j) Switzer, C.; Sinha, S.; Kim,
P. H.; Heuberger, B. D. Angew. Chem., Int. Ed. 2005, 44, 1529–1532.
(k) Switzer, C.; Shin, D. Chem. Commun. 2005, 1342–1344. (l) Ono,
A.; Togashi, H. Angew. Chem., Int. Ed. 2004, 43, 4300–4302. (m)
Zimmermann, N.; Meggers, E.; Schultz, P. G. Bioorg. Chem. 2004,
32, 13–25. (n) Tanaka, K.; Tengeiji, A.; Kato, T.; Toyama, N.;
Shionoya, M. Science 2003, 299, 1212–1213.
(1) For a recent review, see Nielsen, P. E Chem. BiodiVersity 2007, 4,
1996–2002.
(6) For recent reports: (a) Leconte, A. M.; Hwang, G. T.; Matsuda, S.;
Capek, P.; Hari, Y.; Romesberg, F. E. J. Am. Chem. Soc. 2008, 130,
2336–2343. (b) Hirao, I.; Mitsui, T.; Kimoto, M.; Yokoyama, S. J. Am.
Chem. Soc. 2007, 129, 15549–15555. (c) Matsuda, S.; Leconte, A. M.;
Romesberg, F. E. J. Am. Chem. Soc. 2007, 129, 5551–5557. (d) Yang,
Z.; Sismour, A. M.; Sheng, P.; Puskar, N. L.; Benner, S. A. Nucleic
Acids Res. 2007, 35, 4238–4249. (e) Yang, Z.; Sismour, A. M.; Benner,
S. A. Nucleic Acids Res. 2007, 35, 3118–3127. (f) Meena; Sam, M.;
Pierce, K.; Szostak, J. W.; McLaughlin, L. W Org. Lett. 2007, 9, 1161–
1163. (g) Hirao, I.; Kimoto, M.; Mitsui, T.; Fujiwara, T.; Kawai, R.;
Sato, A.; Harada, Y.; Yokoyama, S. Nat. Methods 2006, 3, 729–735.
(h) Imoto, S.; Patro, J. N.; Jiang, Y. L.; Oka, N.; Greenberg, M. M.
J. Am. Chem. Soc. 2006, 128, 14606–14611. (i) Matsuda, S.; Henry,
A. A.; Romesberg, F. E. J. Am. Chem. Soc. 2006, 128, 6369–6375.
(j) Hirao, I. Curr. Opin. Chem. Biol. 2006, 10, 622–627. (k) Kim, Y.;
Leconte, A. M.; Hari, Y.; Romesberg, F. E. Angew. Chem., Int. Ed.
2006, 45, 7809–7812. (l) Leconte, A. M.; Matsuda, S.; Hwang, G. T.;
Romesberg, F. E. Angew. Chem., Int. Ed. 2006, 45, 4326–4329. (m)
Yang, Z.; Hutter, D.; Sheng, P.; Sismour, A. M.; Benner, S. A. Nucleic
Acids Res. 2006, 34, 6095–6101. (n) Hikishima, S.; Minakawa, N.;
Kuramoto, K.; Fujisawa, Y.; Ogawa, M.; Matsuda, A. Angew. Chem.,
Int. Ed. 2005, 44, 596–598. (o) Zhang, L.; Peritz, A.; Meggers, E.
J. Am. Chem. Soc. 2005, 127, 4174–4175.
(2) For a recent review. see Wengel, J.; Petersen, M.; Frieden, M.; Koch,
T. Lett. Pept. Sci. 2004, 10, 237–253.
(3) (a) Heuberger, B. D.; Switzer, C. Org. Lett. 2006, 8, 5809–5811. (b)
Horhota, A.; Zou, K.; Ichida, J. K.; Yu, B.; McLaughlin, L. W.;
Szostak, J. W.; Chaput, J. C. J. Am. Chem. Soc. 2005, 127, 7427–
7434. (c) Ichida, J. K.; Zou, K.; Horhota, A.; Yu, B.; McLaughlin,
L. W.; Szostak, J. W. J. Am. Chem. Soc. 2005, 127, 2802–2803. (d)
Ichida, J. K.; Horhota, A.; Zou, K.; McLaughlin, L. W.; Szostak, J. W.
Nucleic Acids Res. 2005, 33, 5219–5225. (e) Zou, K.; Horhota, A.;
Yu, B.; Szostak, J. W.; McLaughlin, L. W. Org. Lett. 2005, 7, 1485–
1487. (f) Eschenmoser, A. Origin Life EVol. Biosphere 2004, 34, 277–
306. (g) Ferencic, M.; Reddy, G.; Wu, X.; Guntha, S.; Nandy, J.;
Krishnamurthy, R.; Eschenmoser, A Chem. BiodiVersity 2004, 1, 939–
979, and references therein.
(4) (a) Horowitz, E. D.; Hud, N. V. J. Am. Chem. Soc. 2006, 128, 15380–
15381. (b) Prakash, T. P.; Kraynack, B.; Baker, B. F.; Swayze, E. E.;
Bhat, B. Bioorg. Med. Chem. Lett. 2006, 16, 3238–3240. (c) Plevnik,
M.; Gdaniec, Z.; Plavec, J. Nucleic Acids Res. 2005, 33, 1749–1759.
(d) Sinha, S.; Kim, P. H.; Switzer, C. J. Am. Chem. Soc. 2004, 126,
40–41. (e) Denisov, A. Y.; Hannoush, R. N.; Gehring, K.; Damha,
M. J. J. Am. Chem. Soc. 2003, 125, 11525–11531, and references
therein.
9
8762 J. AM. CHEM. SOC. 2008, 130, 8762–8768
10.1021/ja801058h CCC: $40.75
2008 American Chemical Society