Green Chemistry
Paper
127.8, 128.7, 129.1, 129.3, 129.4, 130.5 (CH), 131.4, 133.2,
135.9 (C), 168.6 (CO).
(k) C. W. Leung, W. Zheng, Z. Zhou, Z. Lin and C. P. Lau,
Organometallics, 2008, 27, 4957–4969; (l) G. V. Baelen and
B. U. W. Maes, Tetrahedron, 2008, 64, 5604–5619;
(m) A. Goto, K. Endo and S. Saito, Angew. Chem., Int. Ed.,
2008, 47, 3607–3609; (n) V. Cadierno, J. Francos and
J. Gimeno, Chem.–Eur. J., 2008, 14, 6601–6605;
(o) T. Mitsudome, Y. Mikami, H. Mori, S. Arita,
T. Mizugaki, K. Jitsukawaa and K. Kaneda, Chem. Commun.,
2009, 3258–3260; (p) V. Polshettiwar and R. S. Varma,
Chem.–Eur. J., 2009, 15, 1582–1586; (q) E. S. Kim, H. S. Lee,
S. H. Kim and J. N. Kim, Tetrahedron Lett., 2010, 51, 1589–
1591.
Formamide. Ethyl acetate–hexane (2 : 1); 1H NMR (300 MHz,
DMSO-d6): δ = 5.52 (s, 2H), 7.37 (m, 1H); 13C NMR (DMSO-d6):
δ = 160.6 (CO).
1
Acetamide. Ethyl acetate–hexane (2 : 1); H NMR (300 MHz,
DMSO-d6): δ = 1.79 (s, 3H), 6.71 (s, 1H), 7.31 (s, 1H); 13C NMR
(DMSO-d6): δ = 23.4 (CH3), 160.6 (CO).
Notes and references
1 (a)
F.
Matsuda,
Chemtech,
1977,
7,
306;
5 A. Khalafi-Nezhad, A. Parhami, M. N. S. Radb and A. Zarea,
Tetrahedron Lett., 2005, 46, 6879–6882.
(b) C. E. Mabermann, in Encyclopedia of Chemical Techno-
logy, ed. J. I. Kroschwitz, Wiley, New York, 1991, vol. 1,
pp. 251–266; (c) D. Lipp, in Encyclopedia of Chemical Techno-
logy, ed. J. I. Kroschitz, Wiley, New York, 1991, vol. 1,
pp. 266–287; (d) R. Opsahl, in Encyclopedia of Chemical Techno-
logy, ed. J. I. Kroschwitz, Wiley, New York, 1991, vol. 2,
pp. 346–356.
6 (a) A. Loupy and S. Regnier, Tetrahedron Lett., 1999, 40,
6221–6224; (b) S. Park, Y. Choi, H. Han, S. H. Yang and
S. Chang, Chem. Commun., 2003, 1936–1937; (c) J. Shie and
J. Fang, J. Org. Chem., 2003, 68, 1158–1160; (d) L. Zhang,
S. Wang, S. Zhou, G. Yang and E. Sheng, J. Org. Chem.,
2006, 71, 3149–3153; (e) N. A. Owston, A. J. Parker and
J. M. J. Williams, Org. Lett., 2007, 9, 3599–3601;
(f) H. Fujiwara, Y. Ogasawara, K. Yamaguchi and
N. Mizuno, Angew. Chem., Int. Ed., 2007, 46, 5202–5205;
(g) H. Fujiwara, Y. Ogasawara, M. Kotani, K. Yamaguchi
and N. Mizuno, Chem. Asian J., 2008, 3, 1715–1721;
(h) D. Gnanamgari and R. H. Crabtree, Organometallics,
2009, 28, 922–924; (i) R. S. Ramon, J. Bosson, S. Diez-Gon-
zalez, N. Marion and S. P. Nolan, J. Org. Chem., 2010, 75,
1197–1202.
7 (a) X. -F. Wu, H. Neumann and M. Beller, Chem.–Eur. J.,
2010, 16, 9750–9753; (b) X. -F. Wu, H. Neumann and
M. Beller, Chem. Asian J., 2010, 5, 2168–2172; (c) X. -F. Wu,
J. Schranck, H. Neumann and M. Beller, ChemCatChem,
2012, 4, 69–71; (d) X. -F. Wu, H. Neumann and M. Beller,
Chem.–Eur. J., 2012, 18, 419–422.
8 (a) X. -F. Wu, C. B. Bheeter, H. Neumann, P. H. Dixneuf
and M. Beller, Chem. Commun., 2012, 48, 12237–12239;
(b) J. W. Kim, K. Yamaguchi and N. Mizuno, Angew. Chem.,
Int. Ed., 2008, 47, 9249–9251; (c) Y. Wang, H. Kobayashi,
K. Yamaguchi and N. Mizuno, Chem. Commun., 2012, 48,
2642–2644.
2 For selected examples of synthetic applications of primary
amides, see: (a) L. Goossen, K. Salih and M. Blanchot,
Angew Chem., Int. Ed., 2008, 47, 8492–8495; (b) Z. Wang,
Y. Zhang, H. Fu, Y. Jiang and Y. Zhao, Synlett, 2008, 2667–
2670; (c) N. Ibrahim and M. Legraverend, J. Org. Chem.,
2009, 74, 463–465; (d) C. Volla and P. Vogel, Org. Lett.,
2009, 11, 1701–1704; (e) Y. Pan, F. Zheng, H. Lin and
Z. Zhan, J. Org. Chem., 2009, 74, 3148–3151; (f) C. Yang and
C. Pittman, Synth. Commun., 1998, 28, 2027–2041;
(g) J. Eisch and J. Gitua, Organometallics, 2003, 22, 24–26;
(h) T. Takahashi, O. Sugimoto, J. Koshio and K. Tanji, Het-
erocycles, 2006, 68, 1973–1979; (i) K. Chaudhari,
U. Mahajan, D. Bhalerao and K. Akamanchi, Synlett, 2007,
2815–2818; ( j) J. Campbell, G. McDougald, H. McNab,
L. Rees and R. Tyas, Synthesis, 2007, 3179–3184;
(k) K. Manjula and M. Pasha, Synth. Commun., 2007, 37,
1545–1550; (l) C. Kuo, J. Zhu, J. Wu, C. Chu, C. Yao and
K. Shia, Chem. Commun., 2007, 301–303.
3 S. Budavari, The Merck Index, Merck, Rahway, USA, 11th
edn, 1989.
4 (a) B. F. Plummer, M. Menendez and M. Songster, J. Org.
Chem., 1989, 54, 718–719; (b) W. K. Fung, X. Huang,
M. L. Man, S. M. Ng, M. Y. Hung, Z. Lin and C. P. Lau,
J. Am. Chem. Soc., 2003, 125, 11539–11544; (c) K. L. Breno,
M. D. Pluth and D. R. Tyler, Organometallics, 2003, 22,
1203–1221; (d) K. Yamaguchi, M. Matsushita and
N. Mizuno, Angew. Chem., Int. Ed., 2004, 43, 1576–1580;
(e) X. Jiang, A. J. Minnaard, B. L. Feringa and J. G. de Vries,
J. Org. Chem., 2004, 69, 2327–2331; (f) J. N. Moorthy and
N. Singhal, J. Org. Chem., 2005, 70, 1926–1929;
(g) M. G. Crestani, A. Arevalo and J. J. Garcia, Adv. Synth.
9 (a) K. Yamaguchi, H. Kobayashi, T. Oishi and N. Mizuno,
Angew. Chem., Int. Ed., 2012, 51, 544–547; (b) K. Yamaguchi,
H. Kobayashi, Y. Wang, T. Oishi, Y. Ogasawara and
N. Mizuno, Catal. Sci. Technol., 2013, 3, 318–327; (c) R. Nie,
J. Shi, S. Xia, L. Shen, P. Chen, Z. Hou and F. Xiao, J. Mater.
Chem., 2012, 22, 18115–18115; (d) R. Ohmura, M. Takahata
and H. Togo, Tetrahedron Lett., 2010, 51, 4378–4381;
(e) R. Das and D. Chakraborty, Catal. Commun., 2012, 26,
48–53; (f) X. -Q. Li, W. -K. Wang, Y. -X. Han and C. Zhang,
Adv. Synth. Catal., 2010, 352, 2588–2598.
Catal., 2006, 348, 732–742; (h) C. Mukherjee, D. Zhu, 10 (a) Metal-Catalyzed Reactions in Water, ed. P. H. Dixneuf
E. R. Biehl, R. R. Parmar and L. Hua, Tetrahedron, 2006, 62,
6150–6154; (i) T. Smejkal and B. Breit, Organometallics,
2007, 26, 2461–2464; ( j) C. S. Yi, T. N. Zeczycki and
S. V. Lindeman, Organometallics, 2008, 27, 2030–2035;
and V. Cadierno, Wiley-VCH, 2013; (b) R. Noyori, Chem.
Commun., 2005, 1807–1811; (c) M. -O. Simon and C. -J. Li,
Chem. Soc. Rev., 2012, 41, 1415–1427; (d) X. Han and
M. Poliakoff, Chem. Soc. Rev., 2012, 41, 1428–1436;
This journal is © The Royal Society of Chemistry 2013
Green Chem.