The Journal of Physical Chemistry A
ARTICLE
the aromatic amine solvents (donor) aniline (AN), N-methylani-
line (MAN), and N,N-dimethylaniline (DMAN) with the help of
femtosecond infrared spectroscopy. Monitoring the CdO
stretching vibration of C337 in the S0-state reveals that a
hydrogen bond between C337 and a solvent molecule occurs
in AN and MAN. Electron transfer from amine solvents to
photoexcited C337 can be deduced from the appearance of the
CꢀN stretching vibration band at 2166 cm-1 of C337 radical
anion radical in the transient IR spectrum. Forward ET dynamics
is found to be biexponential with time constants τET1 = 500 fs,
Collin, J.-P.; Gavi~na, P.; Heitz, V.; Sauvage, J.-P. Eur. J. Inorg. Chem.
1998, 1–14. (i) Sauvage, J.-P.; Collin, J.-P.; Chambron, J.-C.; Guillerez,
S.; Coudret, C.; Balzani, V.; Barigelleti, F.; De Cola, L.; Flamigni, L.
Chem. Rev. 1994, 94, 993–1019. (j) Imahori, H.; Norieda, H.; Yamada,
H.; Nishimura, Y.; Yamazaki, I.; Sakata, Y.; Fukuzumi, S. J. Am. Chem.
Soc. 2001, 123, 100–110. (k) Hagfeldt, A.; Gr€atzel, M. Acc. Chem. Res.
2000, 33, 269–277. (l) Bignozzi, C. A.; Argazzi, R.; Indelli, M. T.;
Scandola, F. Sol. Energy Mater. Sol.Cells 1994, 32, 229–244. (m)
O'Regan, B.; Gr€atzel, M. Nature 1991, 353, 737–740.
(3) (a) Krauss, N. Curr. Opin. Chem. Biol. 2003, 7, 540–550. Willner,
I.; Willner, B. Coord. Chem. Rev. 2003, 245, 139–151. (b) Lubitz, W.;
Lendzian, F.; Bittl, R. Acc. Chem. Res. 2002, 35, 313–320.
2
τET = 7 ps in all solvents. This shows that hydrogen bonds
(4) (a) Piotrowiak, P. Chem. Soc. Rev. 1999, 28, 143. (b) Ward, M. D.
Chem. Soc. Rev. 1997, 26, 365.(c) Sessler, J. L.; Wang, B.; Springs, S. L.;
Brown, C. T. In Comprehensive Supramolecular Chemistry; Atwood, J. L.,
Davies, J. E. D., MacNicol, D. D., Vogtle, F., Murakami, Y., Eds.;
Pergamon: Oxford, 1996; Vol. 4, p 311.(d) Deng, Y.; Roberts, J. A.;
Peng, S.-M.; Chang, C. K.; Nocera, D. G. Angew. Chem., Int. Ed. Engl.
1997, 36, 2124. (e) Kirby, J. P.; Roberts, J. A.; Nocera, D. G. J. Am. Chem.
Soc. 1997, 119, 9230. (f) Hayashi, T.; Miyahara, T.; Kumazaki, S.;
Ogoshi, H.; Yoshihara, K. Angew. Chem., Int. Ed. Engl. 1996, 35, 1964. (g)
Damrauer, N. H.; Hodgkiss, J. M.; Rosenthal, J.; Nocera, D. G. J. Phys.
Chem. B 2004, 108, 6315. (h) Hodgkiss, J. M.; Damrauer, N. H.; Pressꢀe,
S.; Rosenthal, J.; Nocera, D. G. J. Phys. Chem. B 2006, 110, 18853. (i)
Reece, S. Y.; Nocera, D. G Annu. Rev. Biochem. 2009, 78, 673.
(5) Cooley, L. F.; Headford, C. F. L.; Elliott, C. M.; Kelly, D. F. J. Am.
Chem. Soc. 1988, 110, 6673.
(6) (a) Bowler, B. E.; Meade, T. J.; Mayo, S. L.; Richards, J. H.; Gray,
H. B. J. Am. Chem. Soc. 1989, 111, 8757. (b) Therien, M. J.; Selman, M.;
Gray, H. B.; Chang, I.-J.; Winkler, J. R. J. Am. Chem. Soc. 1990, 112, 2420.
(c) Beratan, D. N.; Betts, J. N.; Onuchic, J. N. Science 1991, 252, 1285.
(d) Philip, D.; Stoddart, J. F. Angew. Chem., Int. Ed. Engl. 1996, 35,
1154.
(7) (a) de Rege, P. J. F.; Williams, S. A.; Therien, M. J. Science 1995,
269, 1409–1413. (b) Turro, C.; Chang, C. K.; Leroi, G. E.; Cukier, R. I.;
Nocera, D. G. J. Am. Chem. Soc. 1992, 114, 4013–4015. (c) Kirby, J. P.;
Roberts, J. A.; Nocera, D. G. J. Am. Chem. Soc. 1997, 119, 9230–9236.
(d) Roberts, J. A.; Kirby, J. P.; Wall, S. T.; Nocera, D. G. Inorg. Chim. Acta
1997, 263, 395–405. (e) Williamson, D. A.; Bowler, B. E. J. Am. Chem.
Soc. 1998, 120, 10902–10911.
between C337 and the amine solvents do not play a major role in
the forward ET dynamics, which is in addition supported by the
absence of an H/D isotope effect on this ET reaction step in AN.
Due to the fact that driving forces for the forward ET reaction are
significantly different in AN, MAN, and DMAN, we suggest that
electronic interactions between the π-orbitals of C337 and the
aromatic amine solvent molecules play a key role in this process.
We have also followed the back ET dynamics by monitoring the
transient decay of anion radical marker mode (2166 cm-1) of
C337 and found this reaction step to be solvent dependent.
Standard Marcus theory again fails to predict the right correlation
between driving force and reaction rate in the backward ET step.
We suggest that steric hindrance of the dimethylamino group in
the C337/DMAN may be a reason for this.
’ ASSOCIATED CONTENT
S
Supporting Information. Transient UV/vis absorption
b
spectra of C337 in ACN and in DMAN measured in the visible
region at different time delays after exciting C337 at 400 nm
(Figure S1) and associated kinetic traces (Figure S2). Time-
resolved emission kinetics of C337 in acetonitrile after excitation
at 400 nm and detection at 490 nm (Figure S3). This material is
(8) (a) Nagasawa, Y.; Arkadiy, T.; Yartsev, P.; Tominaga, K.; Bisht,
P. B.; Johnson, A. E.; Yoshihara, K. J. Phys. Chem. 1995, 99, 653–662. (b)
Nagasawa, Y.; Arkadiy, T.; Yartsev, P.; Tominaga, K.; Johnson, A. E.;
Yoshihara J. Am. Chem. Soc. 1993, 115, 7922–7923. (c) Pal, H.;
Nagasawa, Y.; Tominaga, K.; Yoshihara, K. J. Phys. Chem. 1996, 100,
11964–11974. (d) Shirota, H.; Pal, H.; Tominaga, K.; Yoshihara, K.
J. Phys. Chem. A 1998, 102, 3089–3102. (e) Rubtsov, I. V.; Shirota, H.;
Yoshihara, K. J. Phys. Chem. A 1999, 103, 1801–1808. (f) Shirota, H.; Pal,
H.; Tominaga, K.; Yoshihara, K. J. Phys. Chem. A 1998, 102, 3089–3102.
(9) (a) Singh, A. K.; Mondal, J. A.; Ramakrishna, G.; Ghosh, H. N.;
Bandyopadhyay, T.; Palit, D. K. J. Phys. Chem. A 2005, 109, 4014–4023.
(b) Glusac, K.; Goun, A.; Fayer, M. D. J. Chem, Phys 2006, 125, 054712.
(10) (a) Mohammed, O. F.; Banerji, N.; Lang, B.; Nibbering, E. T. J.;
Vauthey, E. J. Phys. Chem. A 2006, 110, 13676–13680. (b) Mohammed,
O. F.; Adamczyk, K.; Banerji, N.; Dreyer, J.; Lang, B.; Nibbering, E. T. J.;
Vauthey, E. Angew. Chem., Int. Ed. 2008, 47, 9044–9048.
’ AUTHOR INFORMATION
Corresponding Author
*H.N.G.: e-mail hnghosh@barc.gov.in; fax 00-91-22-25505151.
E.T.J.N.: e-mail nibberin@mbi-berlin.de..
’ REFERENCES
(1) (a) Marcus, R. A. J. Chem. Phys. 1956, 24, 966. (b) Marcus, R. A.
J. Chem. Phys. 1956, 24, 979. (c) Marcus, R. A. Annu. Rev. Phys. Chem.
1964, 15, 155. (d) Barbara, P. F.; Jarzeba, W. Adv. Photochem. 1990, 15,
1. (e) Weaver, M. J.; McManis, G. E., III. Acc. Chem. Res. 1990, 23, 294.
(f) Electron Transfer in Inorganic, Organic and Biological Systems; Bolton,
J. R., Mataga, N., McLendon, G. L., Eds.; American Chemical Society:
Washington, DC, 1991.(g) Newton, M. D.; Sutin, N. Annu. Rev. Phys.
Chem. 1984, 35, 437. (h) Yoshihara, K.; Tominaga, K.; Nagasawa, Y.
Bull. Chem. Soc. Jpn. 1995, 68, 696. (i) Zusman, L. D. Chem. Phys. 1980,
49, 295. (j) Zusman, L. D. Chem. Phys. 1988, 119, 51. (k) Rips, I.;
Jortner, J. J. Chem. Phys. 1987, 87, 2090. (l) Jortner, J.; Bixon, M. J. Chem.
Phys. 1988, 88, 167. (m) Gao, Y. Q.; Marcus, R. A. J. Chem. Phys. 2000,
113, 6351. (n) Marcus, R. A. J. Electroanal. Chem. 1997, 438, 251.
(2) (a) Gust, D.; Moore, T. A.; Moore, A. L. Acc. Chem. Res. 2001, 34,
40–48. (b) Barbara, P. F.; Meyer, T. J.; Ratner, M. A. J. Phys. Chem. 1996,
100, 13148–13168. (c) Hagfeldt, A.; Gr€atzel, M. Chem. Rev. 1995, 95,
49–68. (d) Bard, A. J.; Fox, M. A. Acc. Chem. Res. 1995, 28, 141–145. (e)
Paddon-Row, M. N. Acc. Chem. Res. 1994, 27, 18–25. (f) Wasielewsky,
M. R. Chem. Rev. 1992, 92, 435–461. (g) Baranoff, E.; Collin, J.-P.;
Flamigni, L.; Sauvage, J.-P. Chem. Soc. Rev. 2004, 33, 147–155. (h)
(11) Wang, C.; Akhremitchev, B.; Walker, G. C. J. Phys. Chem. A
1997, 101, 2735.
(12) (a) Chudoba, C.; Nibbering, E. T. J.; Elsaesser, T. Phys. Rev.
Lett. 1998, 81, 3010. Chudoba, C.; Nibbering, E. T. J.; Elsaesser, T.
J. Phys. Chem. A 1999, 103, 5625. (b) Nibbering, E. T. J.; Tschirschwitz,
F.; Chudoba, C.; Elsaesser, T. J. Phys. Chem. A 2000, 104, 4236.
(13) Palit, D. K.; Zhang, T.; Kumazaki, S.; Yoshihara, K. J. Phys.
Chem. A 2003, 107, 10798–10804.
(14) Liu, Y.; Ding, J.; Shi, D.; Sun, J. J. Phys. Chem. A 2008, 112,
6244–6248.
(15) Kaindl, R. A.; Wurm, M.; Reimann, K.; Hamm, P.; Weiner,
A. M.; Woerner, M. J. Opt. Soc. Am. 2000, B 17, 2086.
669
dx.doi.org/10.1021/jp108090b |J. Phys. Chem. A 2011, 115, 664–670