Chemistry - A European Journal
10.1002/chem.201801746
COMMUNICATION
Ward, Cold Spring Harb. Symp. Quant. Biol. 2000, 65, 377-382. (c) W.
K. Pogozelski, T. D. Tullius, Chem. Rev. 1998, 98, 1089-1108. (d) M. M.
Greenberg, Org. Biomol. Chem. 2007, 5, 18-30. (e) P. C. Dedon, Chem.
Res. Toxicol. 2008, 21, 206-219.
Conflict of interests
The authors declare no conflict of interest.
[18] A. Adhikary, D. Becker, B. J. Palmer, A. N. Heizer, M. D. Sevilla, J. Phys.
Chem. B 2012, 116, 5900-5906.
Keywords: C-H activation • photoredox catalysis • cyanation •
phosphoric acid • late-stage functionalization
[
19] During the preparation of this manuscript, Nicewicz and Alexanian
3
reported C(sp )–H azidation using
a phosphate radical as a HAT
mediator, although the catalytic turnover number was still unsatisfactory.
See: K. A. Margrey, W. L. Czaplyski, D. A. Nicewicz, E. J. Alexanian, J.
Am. Chem. Soc. 2018, 140, 4213–4217.
References
3
[
1]
For recent reviews on C(sp )−H transformations, see: (a) J. He, M. Wasa,
K. S. L. Chan, Q. Shao, J.-Q. Yu, Chem. Rev. 2017, 117, 8754-8786. (b)
Q. Lu, F. Glorius, Angew. Chem. Int. Ed. 2017, 56, 49-51. (c) C. Liu, J.
Yuan, M. Gao, S. Tang, W. Li, R. Shi, A. Lei, Chem. Rev. 2015, 115,
[20] (a) F. F. Fleming, L. Yao, P. C. Ravikumar, L. Funk, B. C. Shook, J. Med.
Chem. 2010, 53, 7902-7917. (b) F. F. Fleming, Nat. Prod. Rep. 1999, 16,
597-606.
[21] Y. Ping, Q. Ding, Y. Peng, ACS Catal. 2016, 6, 5989-6005.
[22] (a) E. Müller, H. Huber, Chem. Ber. 1963, 96, 670-682. (b) E. Müller, H.
Huber, Chem. Ber. 1963, 96, 2319-2326. (c) Y. Hayashi,T. Mukaiyama,
Chem. Lett. 1987, 1811-1814. (d) M. Lemaire, J. Doussot, A. Guy, Chem.
Lett. 1988, 1581-1584. (e) V. V. Zhdankin, C. J. Kuehl, A. P. Krasutsky,
J. T. Bolz, B. Mismash, J. K. Woodward, A. J. Simonsen, Tetrahedron
Lett. 1995, 36, 7975-7978. (f) T. Tajima, A. Nakajima, J. Am. Chem. Soc.
2008, 130, 10496-10497. (g) S.-I. Murahashi, T. Nakae, H. Terai, N.
Komiya, J. Am. Chem. Soc. 2008, 130, 11005-11012. (h) S. Singhal, S.
L. Jain, B. Sain, Chem. Commun. 2009, 2371-2372. (i) W. Han, A. R.
Ofial, Chem. Commun. 2009, 5024-5026. (j) X.-Z. Shu, X.-F. Xia, Y.-F.
Yang, K.-G. Ji, X.-Y. Liu, Y.-M. Liang, J. Org. Chem. 2009, 74, 7464-
7469. (k) J. M. Allen, T. H. Lambert, J. Am. Chem. Soc. 2011, 133, 1260-
1262. (l) D. P. Hari, B. König, Org. Lett. 2011, 13, 3852-3855. (m) M.
Rueping, S. Zhu, R. M. Koenigs, Chem. Commun. 2011, 47, 12709-
12711. (n) K. Alagiri, K. R. Prabhu, Org. Biomol. Chem. 2012, 10, 835-
842. (o) L. Ma, W. Chen, D. Seidel, J. Am. Chem. Soc. 2012, 134, 15305-
15308. (p) T. Sonobe, K. Oisaki, M. Kanai, Chem. Sci. 2012, 3, 3249-
3255.
1
2
4
2138-12204. (d) J. Xie, C. Pan, A. Abdukader, C. Zhu, Chem. Soc. Rev.
014, 43, 5245-5256. (e) H. M. L. Davies, J. R. Manning, Nature 2008,
51, 417-424. (f) T. Brückl, R. D. Baxter, Y. Ishihara, P. S. Baran, Acc.
Chem. Res. 2012, 45, 826-839. (g) T. Gensch, M. N. Hopkinson, F.
Glorius, J. Wencel-Delord, Chem. Soc. Rev. 2016, 45, 2900-2936. (h) J.
K. Matsui, S. B. Lang, D. R. Heitz, G. A. Molander, ACS Catal. 2017, 7,
2563-2575. (i) H. Yi, G. Zhang, H. Wang, Z. Huang, J. Wang, A. K. Singh,
A. Lei, Chem. Rev. 2017, 117, 9016-9085.
[
2]
(a) J. Wencel-Delord, F. Glorius, Nat. Chem. 2013, 5, 369-375. (b) T.
Cernak, J, D, Dykstra, S. Tyagarajan, P. Vachal, S. W. Krska, Chem. Soc.
Rev. 2016, 45, 546-576.
[
[
3]
4]
F. Lovering, J. Bikker, C. Humblet, J. Med. Chem. 2009, 52, 6752-6756.
3
For reviews on C(sp )-H transformations via HAT mechanism under
visible light irradiation, see: (a) M. H. Shaw, J. Twilton, D. W. C.
MacMillan, J. Org. Chem. 2016, 81, 6898-6926. (b) L. Capaldo, D. Ravelli,
Eur. J. Org. Chem. 2017, 15, 2056-2071. (c) X.-Q. Hu, J.-R. Chen, W.-J.
Xiao, Angew. Chem. Int. Ed. 2017, 56, 1960-1962.
[
5]
(a) F. Dꢀnꢁs, M. Pichowicz, G. Povie, P. Renaud, Chem. Rev. 2014, 114,
2
587-2693. (b) J. Jin, D. W. C. MacMillan, Nature 2015, 525, 87-90. (c)
[23] (a) S. Kamijo, T. Hoshikawa, M. Inoue, Org. Lett. 2011, 13, 5928-5931.
(b) T. Hoshikawa, S. Yoshioka, S. Kamijo, M. Inoue, Synthesis 2013, 45,
874-887.
J. D. Cuthbertson, D. W. C. MacMillan, Nature 2015, 519, 74-77. (d) D.
Hager, D. W. C. MacMillan, J. Am. Chem. Soc. 2014, 136, 16986-16989.
S. Kato, Y. Saga, M. Kojima, H. Fuse, S. Matsunaga, A. Fukatsu, M.
Kondo, S. Masaoka, M. Kanai, J. Am. Chem. Soc. 2017, 139, 2204-2207.
(a) M. H. Shaw, V. W. Shurtleff, J. A. Terrett, J. D. Cuthbertson, D. W. C.
MacMillan, Science 2016, 352, 1304-1308. (b) C. Le, Y. Liang, R. W.
Evans, X. Li, D. W. C. MacMillan, Nature 2017, 547, 79-83. (c) X. Zhang,
D. W. C. MacMillan, J. Am. Chem. Soc. 2017, 139, 11353-11356. (d) J.
L. Jeffrey, J. A. Terrett, D. W. C. MacMillan, Science 2015, 349, 1532-
[
6]
7]
[24] Z. Zheng, C. L. Hill, Chem. Commun. 1998, 2467-2468.
[25] M. N. Hopkinson, A. Gómez-Suárez, M. Teders, B. Sahoo, F. Glorius,
Angew. Chem. Int. Ed. 2016, 55, 4361-4366.
[
[26] G. J. Choi, Q. Zhu, D. C. Miller, C. J. Gu, R. R. Knowles, Nature 2016,
539, 268-271.
[27] S. K. Singh, N. Manne, M. Pal, Beilstein J. Org. Chem. 2008, 4, 20.
[28] See Supporting Information for details.
1
536.
H. Tanaka, K. Sakai, A, Kawamura, K. Oisaki, M. Kanai, Chem. Commun.
018, doi: 10.1039/C7CC09457D
(a) B. J. Shields, A. G. Doyle, J. Am. Chem. Soc. 2016, 138, 12719-
[29] M. A. Cismesia, T. P. Yoon, Chem. Sci., 2015, 6, 5426-5434.
[30] The BDE value was determined by DFT calculation. See SI for details.
[31] (a) D. R. Heitz, K. Rizwan, G. A. Molander, J. Org. Chem. 2016, 81, 7308-
7313. (b) J.-J. Dai, W.-M. Zhang, Y.-J. Shu, Y.-Y. Sun, J. Xu, Y.-S. Feng,
H.-J. Xu, Chem. Commun. 2016, 52, 6793-6796.
[
8]
9]
2
[
1
2722. (b) Z. Sun, N. Kumagai, M. Shibasaki, Org. Lett. 2017, 19, 3727-
730. (c) H.-P. Deng, X.-Z. Fan, Z.-H. Chen, Q.-H. Xu, J. Wu, J. Am.
3
Chem. Soc. 2017, 139, 13579-13584.
10] D. R. Heitz, J. C. Tellis, G. A. Molander, J. Am. Chem. Soc. 2016, 138,
2715-12718.
11] (a) S. Mukherjee, B. Maji, A. Tlahuext-Aca, F. Glorius, J. Am. Chem. Soc.
016, 138, 16200-16203. (b) S. Mukherjee, R. A. Garza-Sanchez, A.
[
[
1
2
Tlahuext-Aca, F. Glorius, Angew. Chem. Int. Ed. 2017, 56, 14723-14726.
12] X. Liu, L. Lin, X. Ye, C. -H. Tan, Z. Jiang, Asian J. Org. Chem., 2017, 6,
[
422-425.
[
13] S. J. Blanksby, G. B. Ellison, Acc. Chem. Res. 2003, 36, 255-263.
14] F. L. Vaillant, M. D. Wodrich, J. Waser, Chem. Sci., 2017, 8, 1790-1800.
Also see, ref 6b.
[
[15] (a) Q. Zhu, D. E. Graff, R. R. Knowles, J. Am. Chem. Soc. 2018, 140,
741-747. (b) C. E. Hoyle, C. N. Bowman, Angew. Chem. Int. Ed. 2010,
49, 1540-1573.
[
16] Aryl carboxylates are susceptible to decarboxylative degradation under
oxidative photoredox conditions: L. Candish, M. Freitag, T. Gensch, F.
Glorius, Chem. Sci. 2017, 8, 3618. Also see, Supporting Information of
ref 11b.
[17] (a) C. von Sonntag, Free-radical-induced DNA Damage and Its
Repair. Springer-Verlag; Berlin, Heidelberg: 2006; pp 335−447. (b) J. F.
This article is protected by copyright. All rights reserved.