ChemComm
Communication
Furthermore, we thank Dr Thomas Magauer and MSc Klaus
Speck for help with HRMS measurements.
Notes and references
1 (a) T. S. Koblenz, J. Wassenaar and J. N. H. Reek, Chem. Soc. Rev., 2008, 37,
247–262; (b) M. J. Wiester, P. A. Ulmann and C. A. Mirkin, Angew. Chem.,
Int. Ed., 2011, 50, 114–137; (c) M. Raynal, P. Ballester, A. Vidal-Ferran and
P. W. N. M. van Leeuwen, Chem. Soc. Rev., 2014, 43, 1734–1787.
2 (a) F. Hof, S. L. Craig, C. Nuckolls and J. J. Rebek, Angew. Chem., Int. Ed.,
2002, 41, 1488–1508; (b) L. C. Palmer and J. J. Rebek, Org. Biomol. Chem.,
2004, 2, 3051–3059; (c) J. Rebek, Acc. Chem. Res., 2009, 42, 1660–1668;
(d) M. Yoshizawa, J. K. Klosterman and M. Fujita, Angew. Chem., Int. Ed.,
2009, 48, 3418–3438; (e) D. Ajami and J. Rebek, Acc. Chem. Res., 2012, 46,
990–999; ( f ) S. Zarra, D. M. Wood, D. A. Roberts and J. R. Nitschke,
Chem. Soc. Rev., 2014, DOI: 10.1039/C4CS00165F; (g) J. H. Jordan and
B. C. Gibb, Chem. Soc. Rev., 2014, DOI: 10.1039/C4CS00191E.
Fig. 2 Substrate selectivity imposed by hexamer I.
successfully applied for the synthesis of tetrahydrofuran derivatives.
However, in those cases, an increased background reaction was
observed, caused by the high reactivity of the employed starting
materials. On the other hand, substrates that would require the
formation of an intermediary secondary cation showed no reactivity
under the reaction conditions (see ESI,† chapter 10).
´
3 For recent examples, see: (a) V. Bocokic, A. Kalkan, M. Lutz, A. L. Spek,
D. T. Gryko and J. N. H. Reek, Nat. Commun., 2013, 4, 2670, DOI: 10.1038/
ncomms3670; (b) P. Dydio, R. J. Detz and J. N. H. Reek, J. Am. Chem. Soc.,
2013, 135, 10817–10828; (c) A. G. Salles, S. Zarra, R. M. Turner and
J. R. Nitschke, J. Am. Chem. Soc., 2013, 135, 19143–19146; (d) Z. J. Wang,
K. N. Clary, R. G. Bergman, K. N. Raymond and F. D. Toste, Nat. Chem.,
2013, 5, 100–103; (e) C. Zhao, Q.-F. Sun, W. M. Hart-Cooper, A. G.
DiPasquale, F. D. Toste, R. G. Bergman and K. N. Raymond, J. Am. Chem.
Soc., 2013, 135, 18802–18805; ( f ) Q. Zhang and K. Tiefenbacher, J. Am.
Chem. Soc., 2013, 135, 16213–16219; (g) P. Jagadesan, B. Mondal,
A. Parthasarathy, V. J. Rao and V. Ramamurthy, Org. Lett., 2013, 15,
1326–1329; (h) R. Kulasekharan, M. V. S. N. Maddipatla, A. Parthasarathy
and V. Ramamurthy, J. Org. Chem., 2013, 78, 942–949.
After having demonstrated the applicability of hexamer I as
a catalyst in intramolecular hydroalkoxylations, we next tried to
explore the possibility of selectively converting one hydroxy
olefin in the presence of another. Indeed, when adding a
mixture of 3a and 5 (5 equiv. each; Fig. 2) to a solution of I
(1 equiv.) in CDCl3 (3.3 mM), the reaction proceeded in a highly
selective fashion: After 64 h, the small substrate was almost
completely converted (98%), while the large analogue showed
only 8% conversion. This corresponds to a 92 : 8 ratio of
conversion. The slow transformation of the large hydroxy olefin
5 can be explained by its decreased uptake. This observation
correlates to previous findings regarding the hydrolysis rate of
acetals utilizing hexamer I.3f As a control experiment, capsule I
was replaced with 10 mol% of TfOH (pKa = À12; in water),20
since use of 10 mol% of a weaker reagent like acetic acid (pKa =
4.8; in water)20 did not provide any conversion in the case of
substrate 3b after 3 d. As expected, conversion to the cyclic
ethers 4a and 6 proceeded unselectively and less cleanly,
resulting in 61% conversion of 3a and 72% conversion of 5
after 7 h (ratio of 46 : 54). This experiment successfully demon-
strated the selectivity imposed by hexamer I in a reaction that is
very hard to control in bulk solution.
We herein presented the application of hexameric capsule I
as a catalyst in the intramolecular hydroalkoxylation of unactivated
hydroxy olefins under mild conditions. Evidence was provided that
the reactions proceed inside the self-assembled cavity upon encap-
sulation of the substrate. These findings were successfully translated
into substrate selectivity when a mixture of differently sized olefins
was employed. Thus, the unique properties of hexamer I, including
its large internal cavity, its acidic nature and its ability to undergo
strong cation–p interactions were efficiently utilized to mimic basic
properties of enzyme catalysis.
´
4 (a) J. Kang, J. Santamarıa, G. Hilmersson and J. Rebek, J. Am. Chem.
Soc., 1998, 120, 7389–7390; (b) A. Cavarzan, A. Scarso, P. Sgarbossa,
G. Strukul and J. N. H. Reek, J. Am. Chem. Soc., 2011, 133, 2848–2851;
(c) G. Bianchini, G. La Sorella, N. Canever, A. Scarso and G. Strukul,
Chem. Commun., 2013, 49, 5322–5324; (d) S. Shimizu, A. Usui,
M. Sugai, Y. Suematsu, S. Shirakawa and H. Ichikawa, Eur. J. Org.
Chem., 2013, 4734–4737.
5 (a) L. R. MacGillivray and J. L. Atwood, Nature, 1997, 389, 469–472;
(b) L. Avram, Y. Cohen and J. Rebek, Chem. Commun., 2011, 47,
5368–5375.
6 L. Avram and Y. Cohen, Org. Lett., 2002, 4, 4365–4368.
7 T. Evan-Salem, I. Baruch, L. Avram, Y. Cohen, L. C. Palmer and
J. Rebek, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 12296–12300.
8 A. Shivanyuk and J. Rebek, J. Am. Chem. Soc., 2003, 125, 3432–3433.
9 L. Avram and Y. Cohen, J. Am. Chem. Soc., 2004, 126, 11556–11563.
10 (a) L. Avram and Y. Cohen, J. Am. Chem. Soc., 2002, 124,
15148–15149; (b) S. Slovak and Y. Cohen, Chem. – Eur. J., 2012, 18,
8515–8520.
11 M. C. Elliott and E. Williams, J. Chem. Soc., Perkin Trans. 1, 2001,
2303–2340.
12 D. C. Rosenfeld, S. Shekhar, A. Takemiya, M. Utsunomiya and
J. F. Hartwig, Org. Lett., 2006, 8, 4179–4182.
13 (a) G. Carr and D. Whittaker, J. Chem. Soc., Perkin Trans. 2, 1989,
359–366; (b) P. J. Linares-Palomino, S. a. Salido, J. n. Altarejos and
´
A. Sanchez, Tetrahedron Lett., 2003, 44, 6651–6655.
˜
14 L. Coulombel, M. Rajzmann, J.-M. Pons, S. Olivero and E. Dunach,
Chem. – Eur. J., 2006, 12, 6356–6365.
15 A. Kena Diba, J.-M. Begouin and M. Niggemann, Tetrahedron Lett.,
2012, 53, 6629–6632.
16 H. Qian, X. Han and R. A. Widenhoefer, J. Am. Chem. Soc., 2004, 126,
9536–9537.
´
17 E. Perez-Mayoral, I. Matos, P. Nachtigall, M. Poloˇzij, I. Fonseca,
ˇ
´
´
´
D. Vitvarova-Prochazkova and J. Cejka, ChemSusChem, 2013, 6,
1021–1030.
18 S. A. Singh, S. Kabiraj, R. P. Khandare, S. P. Nalawade, K. B. Upar
and S. V. Bhat, Synth. Commun., 2009, 40, 74–80.
This project was supported by the ‘‘Bayerische Akademie der
Wissenschaften’’ (Junges Kolleg), ‘‘Fonds der Chemischen 19 Z. J. Wang, C. J. Brown, R. G. Bergman, K. N. Raymond and
F. D. Toste, J. Am. Chem. Soc., 2011, 133, 7358–7360.
20 E. Raamat, K. Kaupmees, G. Ovsjannikov, A. Trummal, A. Ku¨tt,
Industrie’’ (Sachkostenzuschuss), the TUM Junior Fellow Fund
and the ‘‘Dr-Ing. Leonhard-Lorenz-Stiftung’’. The help of MSc
J. Saame, I. Koppel, I. Kaljurand, L. Lipping, T. Rodima, V. Pihl,
Johannes Richers with graphical design is greatly acknowledged.
I. A. Koppel and I. Leito, J. Phys. Org. Chem., 2013, 26, 162–170.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun.