Page 7 of 8
Dalton Transactions
Please do not adjust margins
Journal Name
ARTICLE
are provided below whereas their 1H NMR and 13C NMR spectra are groups. Crystal structure of 1-Ni displayed a 3D neVtiwewoArrktichleaOvnilninge
two types of pores whereas 2-Ni exhibite
D
d
O
a
I:
s
1
o
0
m
.10
e
3
9/
C
7D
T
0
2
0
6
4
C
included in the ESI (Figures S15-S32, ESI).
packed network. Both CPs supported exchange of coordinated
water molecules and inclusion of iodine within the porous
structure. Binding studies established that the Ni(II) ion in these
CPs bind one equiv. of thiophenol. Both CPs functioned as the
reusable heterogeneous catalysts for the C-S cross coupling
reactions between substituted aromatic halides to that of
Characterization data for a few representative products:
Phenyl(4-tolyl)sulfane. Isolated yield: 87 mg (87 %). 1H NMR
spectrum (400 MHz, CDCl3): δ 7.29 (d, J= 8.4Hz, 2H), 7.25 (d, J= 4.6Hz,
4H), 7.18 (t, J= 4.6Hz, 1H), 7.12 (d, J= 8.4Hz, 2H). 13C NMR spectrum
(100 MHz, CDCl3): δ 137.5, 137.0, 132.2, 131.2, 130.0, 129.7, 129.0, thiophenol as well as cyclohexanethiol and ethanethiol. The
importance of the present CPs increases manifold as they use
earth-abundant nickel as the catalytic metal and are able to
utilize both aromatic as well as aliphatic S-based nucleophiles
while carrying out the reactions heterogeneously.
126.3, 21.1.
1
4-Methoxyphenyl(phenyl)sulfane. Isolated yield: 90 mg (83 %). H
NMR spectrum (400 MHz, CDCl3): δ 7.42 (d, J= 9.16Hz, 2H), 7.23 (d,
J= 8.3Hz, 2H), 7.16 (m, 3H), 6.90 (d, J= 9.9Hz, 2H), 3.81 (s, 3H). 13C
NMR spectrum (100 MHz, CDCl3): δ 159.7, 138.5, 135.3, 128.8, 128.1,
125.6, 124.1, 114.9, 55.2.
Acknowledgements
RG acknowledges the financial support from the Science and
Engineering Research Board (EMR/2016/000888), New Delhi
and the University of Delhi. Authors thank Prof. G. Hundal
(GNDU) and an anonymous reviewer for crystallographic
assistance, Mr. Sunil Yadav for catalysis assistance, Dr. Dyanne
Cruickshank (Rigaku Diffraction) for data collection of 2-Ni, CIF-
USIC at this university for the instrumental facilities and AIRF–
JNU (New Delhi) for the GC–MS facility.
Phenyl(2-tolyl)sulfane. Isolated yield: 83 mg (83 %). 1H NMR
spectrum (400 MHz, CDCl3): δ 7.82 (m, 4H), 7.71 (m, 5H), 2.39 (s, 3H).
13C NMR spectrum (100 MHz, CDCl3): δ 159.9, 137.1, 135.2, 131.3,
129.8, 129.2, 127.2, 115.8, 112.7, 55.2.
4-Nitrophenyl(phenyl)sulfane. Isolated yield: 110 mg (95 %). 1H
NMR spectrum (400 MHz, CDCl3): δ 8.04 (d, J = 9.1, 2H), 7.52 (m, 2H),
7.4 (m, 3H), 7.15 (d, J= 8.3Hz, 2H). 13C NMR spectrum (100 MHz,
CDCl3): δ 148.5, 145.3, 134.7, 130.3, 130.0, 129.6, 126.6, 124.0.
Cyclohexyl(4-methoxyphenl)sulfane. Isolated yield: 86 mg (78 %). 1H
NMR spectrum (400 MHz, CDCl3): δ 7.36 (d, J= 8.3Hz, 2H), 6.81 (d, J =
8.3Hz, 2H), 3.78 (s, 3H), 2.86 (m, 1H), 1.90 (m, 2H), 1.73 (m, 2H), 1.24
(m, 5H). ). 13C NMR spectrum (100 MHz, CDCl3): δ 159.2, 135.5, 124.9,
114.2, 55.3, 47.9, 33.4, 26.2, 25.7.
Notes and references
1
J. F. Hartwig, Nature, 2008, 455, 314; (b) J. Magano, J. R.
Dunertz, Chem. Rev., 2011, 111, 2177.
2
(a) J. Hassan, M. Sevignon, C. Gozzi, E. Schulz, M. Lemaire,
Chem. Rev., 2002, 102, 1359; (b) J. P. Corbet, G. Mignani,
Chem. Rev., 2006, 106, 2651; (c) S. V. Ley, A. W. Thomas,
Angew. Chem. Int. Ed., 2003, 42, 5400; (d) J. P. Wolfe, S.
Wagaw, J. F. Marcoux, S. L. Buchwald, Acc. Chem. Res., 1998,
31, 805.
Cyclohexyl(2-tolyl)sulfane. Isolated yield: 91 mg (88 %). 1H NMR
spectrum (400 MHz, CDCl3): δ 7.34 (m, 1H), 7.13 (m, 2H), 3.07 (m,
1H), 2.38 (s, 3H), 1.96 (m, 1H), 1.76 (m, 2H), 1.31 (m, 5H). 13C NMR
spectrum (100 MHz, CDCl3): δ 139.2, 134.5, 131.1, 130.1, 126.3,
126.1, 45.8, 33.3, 26.1, 25.8, 20.8.
3
4
T. Migita, T. Shimizu, Y. Asami, J. Shiobara, Y. Kato, M. Kosugi,
Bull. Chem. Soc. Jpn., 1980, 53, 1385.
G. Mann, D. Baranano, J. F. Hartwig, A. L. Rheingold, I. A.
Guzei, J. Am. Chem. Soc. 1998, 120, 9205; (b) G. Y. Li, Angew.
Chem. Int. Ed., 2001, 40, 1513; (c) U. Schopfer, A. Schlapbach,
Tetrahedron, 2001, 57, 3069; (d) X. Moreau, J. M. Campagne,
G. Meyer, A. Jutand, Eur. J. Org. Chem., 2005, 17, 3749; (e) M.
A. Fernandez-Rodriguez, J. F. Hartwig, J. Am. Chem. Soc., 2006,
128, 2180; (f) Y. Shi, Z. Cai, P. Guan, G. Pang, Synlett., 2011,
14, 2019; (g) F. Zeng, H. Alper, Org. Lett., 2011, 13, 2868.
(a) L. Rout, T. K. Sen, T. Punniyamurthy, Angew. Chem. Int. Ed.,
2007, 36, 2046; (b) F. Y. Kwong, S. L. Buchwald, Org. Lett.,
Phenyl(4-propylphenyl)sulfane. Isolated yield: 95 mg (84 %). 1H
NMR spectrum (400 MHz, CDCl3): δ 7.49 (d, J= 7.6Hz, 4H), 7.26 (m,
3H), 7.13 (d, J= 8.4Hz, 2H), 2.57 (t, J= 7.2, 2H), 1.63 (m, J= 8.4Hz, 2H),
0.93 (t, J= 7.6Hz, 3H). 13C NMR spectrum (100 MHz, CDCl3): δ 136.9,
132.0, 129.8, 129.4, 129.0, 127.4, 127.1, 126.4, 37.6, 24.4, 13.7.
1
4-Isopropylphenyl(phenyl)sulfane. Isolated yield: 98 mg (86 %). H
5
NMR spectrum (400 MHz, CDCl3): δ 7.49 (m, 1H), 7.30 (m, 3H), 7.24
(m, 3H), 7.19 (m, 2H), 2.87 (m, J= 6.8Hz, 1H), 1.24 (d, J=6.8Hz, 6H).
13C NMR spectrum (100 MHz, CDCl3): δ 148.3, 131.9, 129.9, 129.0,
127.4, 127.1, 126.4, 32.7, 23.8.
2002,
Venkataraman, Org. Lett., 2004,
Rodriguez, Q. Shen, J. F. Hatrwig, J. Am. Chem. Soc., 2006, 128
4
, 3517; (c) C. G. Bates, P. Saejueng, M. Q. Doherty, D,
6
, 5005; (d) M. A. Fernandez-
,
4-Butylphenyl(phenyl)sulfane. Isolated yield: 102 mg (84 %). 1H
NMR spectrum (400 MHz, CDCl3): δ 7.30 (d, J= 7.6Hz, 4H), 7.27 (m,
2H), 7.19 (m, 1H), 7.13 (d, J= 8.4Hz, 2H), 2.59 (t, J= 7.6Hz, 2H), 1.58
(q, J= 6.8Hz, 2H), 1.35 (m, J= 7.6Hz, 2H), 0.92 (t, J= 7.6Hz, 3H). 13C
NMR spectrum (100 MHz, CDCl3): δ 142.6, 136.8, 132.0, 129.8, 129.3,
129.0, 126.3, 35.2, 33.4, 22.4, 13.9.
2128; (e) R. S. Barbieri, C. R. Bellato, A. K. C. Dias, A. C.
Massabni, Catal. Lett., 2006, 109, 171; (f) D. Zhu, L. Xu, F. Wu,
B. Wan, Tetrahedron Lett., 2006, 47, 5781.
6
7
8
(a) M. A. Fernández-Rodríguez, Q. Shen, J. F. Hartwig, J. Am.
Chem. Soc., 2006, 128, 2180; (b) C. Mispelaere-Canivet, J. F.
Spindler, S. Perrio, P. Beslin, Tetrahedron, 2005, 61, 5253.
(a) I. P. Beletskaya, V. P. Ananikov, Chem. Rev., 2011, 111
,
1596; (b) Y. Zhang, Y. Li, X. Zhang, X. Xiang, Chem. Commun.,
2015, 51, 941.
(a) S. Ranjit, Z. Duan, P. Zhang, X. Liu, Org. Lett., 2010, 12
,
4134; (b) Y. J. Chen, H. H. Chen, Org. Lett., 2006, , 5609; (c)
8
Conclusions
W. Y. Wu, J. C. Wang, F. Y. Tsai, Green Chem., 2009, 11, 326;
(d) A. Correa, M. Carril, C. Bolm, Angew. Chem. Int. Ed., 2008,
47, 2880; (e) E. Sperotto, G. P. M. van Klink, J. G. de Vries, G.
Van Koten, J. Org. Chem., 2008, 73, 5625; (f) V. K. Akkilagunta,
In this work, we showed the synthesis and characterization of
two Ni(II) based coordination polymers using two Co(III) based
metalloligands decorated with appended arylcarboxylate
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 7
Please do not adjust margins