Journal of the American Chemical Society
Page 10 of 11
glycosylase: Insights into recognition and processing of G.T
mispairs. DNA Repair 2011, 10 (5), 545-553.
1. Maiti, A.; Michelson, A. Z.; Armwood, C. J.; Lee, J. K.; Drohat,
A. C., Divergent mechanisms for enzymatic excision of 5-
formylcytosine and 5-carboxylcytosine from DNA. J. Am. Chem.
Soc. 2013, 135 (42), 15813-22.
22. Sumino, M.; Ohkubo, A.; Taguchi, H.; Seio, K.; Sekine, M.,
Synthesis and properties of oligodeoxynucleotides containing 5-
carboxy-2'-deoxycytidines. Bioorg Med Chem Lett 2008, 18 (1), 274-
39. Morgan, M. T.; Maiti, A.; Fitzgerald, M. E.; Drohat, A. C.,
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
Stoichiometry and affinity for thymine DNA glycosylase binding to
specific and nonspecific DNA. Nucleic Acids Res 2011, 39 (6), 2319-
2329.
40. Buechner, C. N.; Maiti, A.; Drohat, A. C.; Tessmer, I., Lesion
search and recognition by thymine DNA glycosylase revealed by
single molecule imaging. Nucleic Acids Res 2015, 43 (5), 2716-2729.
41. Pozharski, E., Percentile-based spread: a more accurate way to
2
compare crystallographic models. Acta Crystallogr
Crystallogr 2010, 66 (Pt 9), 970-978.
D Biol
7
.
2
3. Gallinari, P.; Jiricny, J.,
glycosylases related to human thymine-DNA glycosylase. Nature
996, 383 (6602), 735-8.
4. Maiti, A.; Morgan, M. T.; Drohat, A. C., Role of two strictly
A
new class of uracil-DNA
42. Hashimoto, H.; Zhang, X.; Cheng, X., Activity and crystal
structure of human thymine DNA glycosylase mutant N140A with 5-
carboxylcytosine DNA at low pH. DNA Repair (Amst) 2013, 12 (7),
535-540.
43. Stivers, J. T.; Pankiewicz, K. W.; Watanabe, K. A., Kinetic
mechanism of damage site recognition and uracil flipping by
Escherichia coli uracil DNA glycosylase. Biochemistry 1999, 38 (3),
952-63.
44. Chepanoske, C. L.; Porello, S. L.; Fujiwara, T.; Sugiyama, H.;
David, S. S., Substrate recognition by Escherichia coli MutY using
substrate analogs. Nucleic Acids Res 1999, 27 (15), 3197-204.
45. Dow, B. J.; Malik, S. S.; Drohat, A. C., Defining the Role of
Nucleotide Flipping in Enzyme Specificity Using (19)F NMR. J. Am.
Chem. Soc. 2019, 141 (12), 4952-4962.
46. Lee, S.; Verdine, G. L., Atomic substitution reveals the
structural basis for substrate adenine recognition and removal by
adenine DNA glycosylase. Proc Natl Acad Sci U S A 2009, 106 (44),
18497-502.
47. Dai, Q.; Sanstead, P. J.; Peng, C. S.; Han, D.; He, C.;
Tokmakoff, A., Weakened N3 Hydrogen Bonding by 5-
Formylcytosine and 5-Carboxylcytosine Reduces Their Base-Pairing
Stability. ACS Chem Biol 2016, 11 (2), 470-7.
48. Hansch, C.; Leo, A.; Taft, R. W., A Survey of Hammett
Substituent Constants and Resonance and Field Parameters. Chem.
Rev. 1991, 91 (2), 165-195.
49. Hashimoto, H.; Hong, S.; Bhagwat, A. S.; Zhang, X.; Cheng,
X., Excision of 5-hydroxymethyluracil and 5-carboxylcytosine by the
thymine DNA glycosylase domain: its structural basis and
implications for active DNA demethylation. Nucleic Acids Res 2012,
40 (20), 10203-14.
50. Gill, S. C.; von Hippel, P. H., Calculation of protein extinction
coefficients from amino acid sequence data. Anal. Biochem. 1989,
182 (2), 319-26.
1
2
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
conserved residues in nucleotide flipping and N-glycosylic bond
cleavage by human thymine DNA glycosylase. J Biol Chem 2009,
2
84 (52), 36680-36688.
25. Hardeland, U.; Bentele, M.; Jiricny, J.; Schar, P., Separating
substrate recognition from base hydrolysis in human thymine DNA
glycosylase by mutational analysis. J Biol Chem 2000, 275 (43),
3
2
3449-33456.
6. Barrett, T. E.; Scharer, O. D.; Savva, R.; Brown, T.; Jiricny, J.;
Verdine, G. L.; Pearl, L. H., Crystal structure of a thwarted mismatch
glycosylase DNA repair complex. EMBO J 1999, 18 (23), 6599-
6
2
609.
7. Berti, P. J.; McCann, J. A., Toward a detailed understanding of
base excision repair enzymes: transition state and mechanistic
analyses of N-glycoside hydrolysis and N-glycoside transfer. Chem.
Rev. 2006, 106 (2), 506-55.
2
8. Werner, R. M.; Stivers, J. T., Kinetic isotope effect studies of
the reaction catalyzed by uracil DNA glycosylase: evidence for an
oxocarbenium ion-uracil anion intermediate. Biochemistry 2000, 39
(46), 14054-14064.
29. Dinner, A. R.; Blackburn, G. M.; Karplus, M., Uracil-DNA
glycosylase acts by substrate autocatalysis. Nature 2001, 413 (6857),
52-755.
0. Naydenova, E.; Dietschreit, J. C. B.; Ochsenfeld, C., Reaction
7
3
Mechanism for the N-Glycosidic Bond Cleavage of 5-
Formylcytosine by Thymine DNA Glycosylase. J Phys Chem B
2
3
019, 123 (19), 4173-4179.
1. Coey, C. T.; Malik, S. S.; Pidugu, L. S.; Varney, K. M.;
Pozharski, E.; Drohat, A. C., Structural basis of damage recognition
by thymine DNA glycosylase: Key roles for N-terminal residues.
Nucleic Acids Res 2016, 44 (21), 10248-10258.
32. Pidugu, L. S.; Flowers, J. W.; Coey, C. T.; Pozharski, E.;
Greenberg, M. M.; Drohat, A. C., Structural Basis for Excision of 5-
Formylcytosine by Thymine DNA Glycosylase. Biochemistry 2016,
51. Dai, Q.; Lu, X.; Zhang, L.; He, C., Synthesis of DNA oligos
containing
2'-deoxy-2'-fluoro-D-arabinofuranosyl-5-
carboxylcytosine as hTDG inhibitor. Tetrahedron 2012, 68 (26),
5145-5151.
52. Morgan, M. T.; Bennett, M. T.; Drohat, A. C., Excision of 5-
halogenated uracils by human thymine DNA glycosylase: Robust
activity for DNA contexts other than CpG. J Biol Chem 2007, 282
(38), 27578-27586.
53. Waters, T. R.; Swann, P. F., Kinetics of the action of thymine
DNA glycosylase. J Biol Chem 1998, 273 (32), 20007-20014.
54. Kabsch, W., Xds. Acta Crystallogr D Biol Crystallogr 2010, 66
(Pt 2), 125-32.
55. Evans, P. R., An introduction to data reduction: space-group
determination, scaling and intensity statistics. Acta Crystallogr D
Biol Crystallogr 2011, 67 (Pt 4), 282-92.
56. Winn, M. D.; Ballard, C. C.; Cowtan, K. D.; Dodson, E. J.;
Emsley, P.; Evans, P. R.; Keegan, R. M.; Krissinel, E. B.; Leslie, A.
G.; McCoy, A.; McNicholas, S. J.; Murshudov, G. N.; Pannu, N. S.;
Potterton, E. A.; Powell, H. R.; Read, R. J.; Vagin, A.; Wilson, K. S.,
Overview of the CCP4 suite and current developments. Acta
Crystallogr D Biol Crystallogr 2011, 67 (Pt 4), 235-42.
57. Battye, T. G.; Kontogiannis, L.; Johnson, O.; Powell, H. R.;
Leslie, A. G., iMOSFLM: a new graphical interface for diffraction-
5
3
5 (45), 6205-6208.
3. Zhang, L.; Lu, X.; Lu, J.; Liang, H.; Dai, Q.; Xu, G. L.; Luo, C.;
Jiang, H.; He, C., Thymine DNA glycosylase specifically recognizes
5
-carboxylcytosine-modified DNA. Nat Chem Biol 2012, 8 (4), 328-
3
30.
3
4. Scharer, O. D.; Kawate, T.; Gallinari, P.; Jiricny, J.; Verdine, G.
L., Investigation of the mechanisms of DNA binding of the human
G/T glycosylase using designed inhibitors. Proc Natl Acad Sci U S A
1997, 94 (10), 4878-4883.
3
5. Maiti, A.; Noon, M. S.; Mackerell, A. D., Jr.; Pozharski, E.;
Drohat, A. C., Lesion processing by a repair enzyme is severely
curtailed by residues needed to prevent aberrant activity on
undamaged DNA. Proc Natl Acad Sci U S A 2012, 109 (21), 8091-
8096.
3
6. Coey, C. T.; Drohat, A. C., Defining the impact of sumoylation
on substrate binding and catalysis by thymine DNA glycosylase.
Nucleic Acids Res 2018, 46 (10), 5159-5170.
3
7. Maiti, A.; Morgan, M. T.; Pozharski, E.; Drohat, A. C., Crystal
Structure of Human Thymine DNA Glycosylase Bound to DNA
Elucidates Sequence-Specific Mismatch Recognition. Proc Natl
Acad Sci USA 2008, 105 (26), 8890-8895.
image processing with MOSFLM. Acta Crystallogr
Crystallogr 2011, 67 (Pt 4), 271-81.
D Biol
3
8. Malik, S. S.; Coey, C. T.; Varney, K. M.; Pozharski, E.; Drohat,
58. Karplus, P. A.; Diederichs, K., Linking crystallographic model
and data quality. Science 2012, 336 (6084), 1030-3.
59. McCoy, A. J.; Grosse-Kunstleve, R. W.; Storoni, L. C.; Read,
A. C., Thymine DNA glycosylase exhibits negligible affinity for
nucleobases that it removes from DNA. Nucleic Acids Res 2015, 43
(19), 9541-9552.
ACS Paragon Plus Environment