Published on Web 11/23/2005
Brønsted Base-Modulated Regioselectivity in the Aerobic
Oxidative Amination of Styrene Catalyzed by Palladium
Vitaliy I. Timokhin and Shannon S. Stahl*
Contribution from the Department of Chemistry, UniVersity of WisconsinsMadison,
1101 UniVersity AVenue, Madison, Wisconsin 53706
Received September 12, 2005; E-mail: stahl@chem.wisc.edu
Abstract: Palladium(II)-catalyzed aerobic oxidative amination of styrene with oxazolidinone proceeds with
catalyst-controlled regioselectivity: (CH3CN)2PdCl2 (1) and (Et3N)2PdCl2 (2) catalyze formation of the anti-
Markovnikov and Markovnikov enecarbamate products, 3 and 4, respectively. Kinetic studies and deuterium
kinetic isotope effects demonstrate that these two reactions possess different rate-limiting steps, and the
data indicate that the product regiochemistry arises from the presence or absence of an effective Brønsted
base in the reaction. In the presence of a Brønsted base such as triethylamine or acetate, the kinetically
preferred Markovnikov aminopalladation adduct of styrene is trapped via rapid deprotonation of a zwitterionic
intermediate and leads to formation of 4. In the absence of an effective Brønsted base, however, slow
deprotonation of this adduct enables aminopalladation to be reversible, and product formation proceeds
through the thermodynamically preferred anti-Markovnikov aminopalladation adduct to yield 3.
Introduction
in commercial organic molecules, ranging from commodity and
fine chemicals to pharmaceuticals and agrochemicals. Metal-
Aryl and alkyl olefins generally do not react with amines. In
recent years, however, a number of catalysts have been identified
that promote the intermolecular coupling of amines and
alkenes.1-10 The widespread interest in this chemistry arises
from the prominence of nitrogen-containing functional groups
catalyzed addition of amines to terminal alkenes can yield
several different products depending on the catalyst and reaction
conditions, including alkylamines via hydroamination (eq 1) and
imines or enamines via oxidative amination (eqs 2 and 3). These
reactions may proceed with Markovnikov or anti-Markovnikov
regioselectivity, and the desired isomer depends on the specific
application. The ability to achieve catalyst control over regio-
chemistry represents an important target of ongoing research
efforts.11
(1) For recent reviews and highlights, see: (a) Roundhill, D. M. Catal. Today
1997, 37, 155-165. (b) Mu¨ller, T. E.; Beller, M. Chem. ReV. 1998, 98,
675-703. (c) Nobis, M.; Driessen-Ho¨lscher, B. Angew. Chem., Int. Ed.
2001, 40, 3983-3985. (d) Brunet, J. J.; Neibecker, D. In Catalytic
Heterofunctionalization; Togni, A., Gru¨tzmacher, H., Eds.; Wiley-VCH:
New York, 2001; pp 91-141. (e) Beller, M.; Breindl, C.; Eichberger, M.;
Hartung, C. G.; Seayad, J.; Thiel, O. R.; Tillack, A.; Trauthwein, H. Synlett
2002, 1579-1594. (f) Roesky, P. W.; Mu¨ller, T. E. Angew. Chem., Int.
Ed. 2003, 42, 2708-2710. (g) Hong, S.; Marks, T. J. Acc. Chem. Res.
2004, 37, 673-686.
(2) For early examples, see: (a) Coulson, D. R. Tetrahedron Lett. 1971, 12,
429-430. (b) Diamond, S. E.; Szalkiewicz, A.; Mares, F. J. Am. Chem.
Soc. 1979, 101, 490-491. (c) Casalnuovo, A. L.; Calabrese, J. C.; Milstein,
D. J. Am. Chem. Soc. 1988, 110, 6738-6744.
(3) (a) Dorta, R.; Egli, P.; Zu¨rcher, F.; Togni, A. J. Am. Chem. Soc. 1997,
119, 10857-10858. (b) Senn, H. M.; Blo¨chl, P. E.; Togni, A. J. Am. Chem.
Soc. 2000, 122, 4098-4107.
(4) (a) Brunet, J.-J.; Neibecker, D.; Philippot, K. Tetrahedron Lett. 1993, 34,
3877-3880. (b) Brunet, J.-J.; Chu, N. C.; Diallo, O.; Mothes, E. J. Mol.
Catal. A: Chem. 2003, 198, 107-110. (c) Brunet, J.-J.; Cadena, M.; Chu,
N. C.; Diallo, O.; Jacob, K.; Mothes, E. Organometallics 2004, 23, 1264-
1268. (d) Brunet, J.-J.; Chu, N. C.; Diallo, O. Organometallics 2005, 24,
3104-3110.
(5) (a) Beller, M.; Eichberger, M.; Trauthwein, H. Angew. Chem., Int. Ed. Engl.
1997, 36, 2225-2227. (b) Beller, M.; Trauthwein, H.; Eichberger, M.;
Breindl, C.; Herwig, J.; Mu¨ller, T. E.; Thiel, O. R. Chem.sEur. J. 1999,
5, 1306-1319. (c) Beller, M.; Trauthwein, H.; Eichberger, M.; Breindl,
C.; Mu¨ller, T. E. Eur. J. Inorg. Chem. 1999, 1121-1132. (d) Beller, M.;
Thiel, O. R.; Trauthwein, H.; Hartung, C. G. Chem.sEur. J. 2000, 6, 2513-
2522. (e) Tillack, A.; Trauthwein, H.; Hartung, C. G.; Eichberger, M.; Pitter,
S.; Jansen, A.; Beller, M. Monatsh. Chem. 2000, 131, 1327-1334.
(6) (a) Kawatsura, M.; Hartwig, J. F. J. Am. Chem. Soc. 2000, 122, 9546-
9547. (b) Nettekoven, U.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124,
1166-1167. (c) Utsunomiya, M.; Kuwano, R.; Kawatsura, M.; Hartwig,
J. F. J. Am. Chem. Soc. 2003, 125, 5608-5609. (d) Utsunomiya, M.;
Hartwig, J. F. J. Am. Chem. Soc. 2003, 125, 14286-14287. (e) Utsunomiya,
M.; Hartwig, J. F. J. Am. Chem. Soc. 2004, 126, 2702-2703. (f) Takaya,
J.; Hartwig, J. F. J. Am. Chem. Soc. 2005, 127, 5756-5757.
Oxidative amination reactions are synthetically attractive
because they lead to a net increase in substrate functionality,
and we recently reported methods for the oxidative amination
(8) Ryu, J.-S.; Li, G. Y.; Marks, T. J. J. Am. Chem. Soc. 2003, 125, 12584-
12605.
(9) (a) Wang, X.; Widenhoefer, R. A. Organometallics 2004, 23, 1649-1651.
(b) Qian, H.; Widenhoefer, R. A. Org. Lett. 2005, 7, 2635-2638.
(10) Karshtedt, D.; Bell, A. T.; Tilley, T. D. J. Am. Chem. Soc. 2005, 127,
12640-12646.
(11) White and co-workers recently reported an example of Pd-catalyzed allylic
oxidation of terminal alkenes that preferentially forms the branched or linear
allylic acetate, depending on the reaction conditions: Chen, M. S.; White,
M. C. J. Am. Chem. Soc. 2004, 126, 1346-1347.
(7) Hosokawa, T.; Takano, M.; Kuroki, Y.; Murahashi, S.-I. Tetrahedron Lett.
1992, 33, 6643-6646.
9
17888
J. AM. CHEM. SOC. 2005, 127, 17888-17893
10.1021/ja0562806 CCC: $30.25 © 2005 American Chemical Society