Macromolecules
Article
(15) Wen, L.; Duck, B. C.; Dastoor, P. C.; Rasmussen, S. C.
Macromolecules 2008, 41, 4576−4578.
(25) (a) Wong, M.; Hollinger, J.; Kozycz, L. M.; McCormick, T. M.;
Lu, Y.; Burns, D. C.; Seferos, D. S. ACS Macro Lett. 2012, 1, 1266−
1269. (b) Hiorns, R. C.; de Bettignies, R.; Leroy, J.; Bailly, S.; Firon,
M.; Sentein, C.; Khoukh, A.; Preud’homme, H.; Dagron-Lartigau, C.
Adv. Funct. Mater. 2006, 16, 2263−2273. (c) Liu, J.; Loewe, R. S.;
McCullough, R. D. Macromolecules 1999, 32, 5777−5785.
(26) Strotman, N. A.; Chobanian, H. R.; He, J.; Guo, Y.; Dormer, P.
G.; Jones, C. M.; Steves, J. E. J. Org. Chem. 2010, 75, 1733−1739.
(27) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 4176−
4211.
(28) PTzDIBO: 5.09 ppm at 25 °C and 5.11 ppm at 50 °C in
CDCl3; 5.27 ppm at 100 °C in ODCB-d4. PTzTIP: 5.28 ppm at 150
°C in ODCB-d4. PBTzTIP: 4.88 ppm at 25° in CDCl3; 5.00 ppm at
100 °C in ODCB-d4.
(16) Bronstein, H.; Hurhangee, M.; Fregoso, E. C.; Beatrup, D.; Soon,
Y. W.; Huang, Z.; Hadipour, A.; Tuladhar, P. S.; Rossbauer, S.; Sohn, E.;
Shoaee, S.; Dimitrov, S. D.; Frost, J. M.; Ashraf, R. S.; Kirchartz, T.;
Watkins, S. E.; Song, K.; Anthopoulos, T.; Nelson, J.; Rand, B. P.;
Durrant, J. R.; McCulloch, I. Chem. Mater. 2013, 25, 4239−4249.
(17) (a) Mamada, M.; Nishida, J.; Kumaki, D.; Tokito, S.; Yamashita,
Y. Chem. Mater. 2007, 19, 5404−5409. (b) Ando, S.; Murakami, R.;
Nishida, J.; Tada, H.; Inoue, Y.; Tokito, S.; Yamashita, Y. J. Am. Chem.
Soc. 2005, 127, 14996−14997. (c) Akhtaruzzaman, M.; Kamata, N.;
Nishida, J.; Ando, S.; Tada, H.; Tomurab, M.; Yamashita, Y. Chem.
Commun. 2005, 3183−3185.
(18) Lin, Y.; Fan, H.; Li, Y.; Zhan, X. Adv. Mater. 2012, 24, 3087−3106.
(19) Current examples: (a) Saeki, A.; Tsuji, M.; Yoshikawa, S.; Gopal,
A.; Seki, S. J. Mater. Chem. A 2014, 17, 6075−6080. (b) Osaka, I.;
Saito, M.; Koganezawa, T.; Takimiya, K. Adv. Mater. 2014, 26, 331−
338. (c) Ren, G.; Schlenker, C. W.; Ahmed, E.; Subramaniyan, S.;
Olthof, S.; Kahn, A.; Ginger, D. S.; Jenekhe, S. A. Adv. Funct. Mater.
2013, 23, 1238−1249. (d) Intemann, J. J.; Mike, J. F.; Cai, M.; Barnes,
C. A.; Xiao, T.; Roggers, R. A.; Shinar, J.; Shinar, R.; Jeffries-El, Ma. J.
Polym. Sci., Part A: Polym. Chem. 2013, 51, 916−923. (e) Itaru, O.;
Masahiko, S.; Hiroki, M.; Tomoyuki, K.; Kazuo, T. Adv. Mater. 2012,
24, 425−430. (f) Lu, W.; Kuwabara, J.; Kanbara, T. Polym. Chem.
2012, 3, 3217−3219. (g) Zhang, M.; Fan, H.; Guo, X.; Yang, Y.; Wang,
S.; Zhang, Z.-G.; Zhang, J.; Zhan, X.; Li, Y. J. Polym. Sci., Part A: Polym.
Chem. 2011, 49, 2746−2754. (h) Yamamoto, T.; Otsuka, S.-I.;
Fukumoto, H.; Sakai, Y.; Aramaki, S.; Fukudo, T.; Emoto, A.;
Ushijima, H. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 1508−1512.
(i) Allard, N.; Beaupre, S.; Badrou, R.; Najari, A.; Tao, Y.; Leclerc, M.
Macromolecules 2011, 44, 7184−7187. (j) Kudla, C. J.; Dolfen, D.;
Schottler, K. J.; Koenen, J.-M.; Breusov, D.; Allard, S.; Scherf, U.
Macromolecules 2010, 43, 7864−7867.
(20) (a) Mori, S.; Yamamoto, T.; Asakawa, N.; Yazawa, K.; Inoue, Y.
Polym. J. 2008, 40, 475−478. (b) Mori, S.; Inoue, Y.; Yamamoto, T.;
Asakawa, N. Phys. Rev. B 2005, 71, 054205−054205−11. (c) Yama-
moto, T.; Komarudin, D.; Arai, M.; Lee, B.; Suganuma, H.; Asakawa,
N.; Inoue, Y.; Kubota, K.; Sasaki, S.; Fukuda, T.; Matsuda, H. J. Am.
Chem. Soc. 1998, 120, 2047−2058. (d) Yamamoto, T.; Suganuma, H.;
Maruyama, T.; Inoue, T.; Muramatsu, Y.; Arai, M.; Komarudin, D.;
Ooba, N.; Tomaru, S.; Sasaki, S.; Kubota, K. Chem. Mater. 1997, 9,
1217−1225. (e) Yamamoto, T.; Suganuma, H.; Maruyama, T.;
Kubota, K. J. Chem. Soc., Chem. Commun. 1995, 1613−1614.
(29) Chen, T.; Wu, X.; Rieke, R. D. J. Am. Chem. Soc. 1995, 117,
233−244.
(30) Pammer, F.; Guo, F.; Lalancette, R. A.; Jakle, F. Macromolecules
̈
2012, 45, 6333−6343.
(31) Yamamoto, T.; Komarudin, D.; Arai, M.; Lee, B.-L.; Suganuma,
H.; Asakawa, N.; Inoue, Y.; Kubota, K.; Sasaki, S.; Fukuda, T.;
Matsuda, H. J. Am. Chem. Soc. 1998, 120, 2047−2058.
(32) (a) Cook, S.; Furube, A.; Katoh, R. Energy Environ. Sci. 2008, 1,
294−299. (b) Li, Y.; Vamvounis, G.; Holdcroft, S. Macromolecules
2002, 35, 6900−6906.
(33) (a) Panzer, F.; Bassler, H.; Lohwasser, R.; Thelakkat, M.;
̈
Kohler, A. J. Phys. Chem. Lett. 2014, 5 (15), 2742−2747. (b) Adachi,
̈
T.; Brazard, J.; Ono, R. J.; Hanson, B.; Traub, M. C.; Wu, Z.-Q.; Li, Z.;
Bolinger, J. C.; Ganesan, V.; Bielawski, C. W.; Vanden Bout, D. A.;
Barbara, P. F. J. Phys. Chem. Lett. 2011, 2, 1400−1404.
(34) Zhou, G.; Qian, G.; Ma, L.; Cheng, Y.; Xie, Z.; Wang, L.; Jing,
X.; Wang, F. Macromolecules 2005, 38, 5416−5424.
(35) Nehls, B. S.; Fuldner, S.; Preis, E.; Farrell, T.; Scherf, U.
̈
Macromolecules 2005, 38, 687−694.
(36) (a) Huang, H.; Zhou, N.; Ortiz, R. P.; Chen, Z.; Loser, S.;
́
Zhang, S.; Guo, X.; Casado, J.; Lopez Navarrete, J. T.; Yu, X.;
Facchetti, A.; Marks, T. J. Adv. Funct. Mater. 2014, 3016−3028.
(b) Guo, X.; Quinn, J.; Chen, Z.; Usta, H.; Zheng, Y.; Xia, Y.; Hennek,
J. W.; Ortiz, R. P.; Marks, T. J.; Facchetti, A. J. Am. Chem. Soc. 2013,
135, 1986−1996. (c) Guo, X.; Ortiz, R. P.; Zheng, Y.; Kim, M.-G.;
Zhang, S.; Hu, Y.; Lu, G.; Facchetti, A.; Marks, T. J. J. Am. Chem. Soc.
2011, 133, 13685−13697. (d) Guo, X.; Kim, F. S.; Jenekhe, S. A.;
Watson, M. D. J. Am. Chem. Soc. 2009, 131, 7206−7207. (e) Roncali,
J.; Blanchard, P.; Frere, P. J. Mater. Chem. 2005, 15, 1589−1610.
(37) Zoombelt, A. P.; Leenen, M. A. M.; Fonrodona, M.; Wienk, M.
M.; Janssen, R. A. J. Thin Solid Films 2008, 516, 7176−7180.
(38) Fontana, L.; Vinh, D. Q.; Santoro, M.; Scandolo, S.; Gorelli, F.
A.; Bini, R.; Hanfland, M. Phys. Rev. B 2007, 75, 174112 (1−11).
(39) (a) Thompson, B. C.; Kim, Y.-G.; McCarley, T. D.; Reynolds, J.
R. J. Am. Chem. Soc. 2006, 128, 12714−12725. (b) Hansen, W. N.;
Hansen, G. J. Phys. Rev. A: At., Mol., Opt. Phys. 1987, 36, 1396−1402.
(c) Pavlishchuk, V. V.; Addison, A. W. Inorg. Chim. Acta 2000, 298,
97−102.
(21) (a) Politis, J. K.; Curtis, M. D.; Gonzal
́
ez-Ronda, L.; Martin, D.
ez-Ronda, L.;
C. Chem. Mater. 2000, 12, 2798−2804. (b) Gonzal
́
Martin, D. C.; Nanos, J. I.; Politis, J. K.; Curtis, M. D. Macromolecules
1999, 32, 4558−4565. (c) Politis, J. K.; Somoza, F. B., Jr.; Kampf, J.
́
W.; Curtis, M. D.; Gonzalez-Ronda, L.; Martin, D. C. Chem. Mater.
1999, 11, 2274−2284. (d) Politis, J. K.; Curtis, M. D.; He, Y.; Kanicki,
J. Macromolecules 1999, 32, 2484−2489. (e) Curtis, M. D.; Cheng, H.;
́
Johnson, J. A.; Nanos, J. I.; Kasim, R.; Elsenbaumer, R. L.; Gonzalez-
Ronda, L.; Martin, D. C. Chem. Mater. 1998, 10, 13−16. (f) Nanos, J.
I.; Kampf, J. W.; Curtis, M. D. Chem. Mater. 1995, 7, 2232−2234.
(22) Pammer, F.; Passlack, U. ACS Macro Lett. 2014, 3, 170−174.
(23) Molecular weights were determined via GPC in CHCl3 at 35 °C
relative to polystyrene standards. GPC-analyses of PTzDIBO with
THF as eluent gave higher molecular weights than GPC in CHCl3.
(e.g., batches polymerized with Ni(dppe)Cl2 gave Mn = 122.6 kDa,
(PDI = 1.43) and 97.8 kDa, (PDI = 1.26), when analyzed in THF,
while in CHCl3 Mn = 60.7 (PDI = 1.50) and 44.5 kDa (PDI = 1.52)
were measured for the same samples. For the soluble fraction of
PTzTIP the maximum Mn observed in THF was 3.5 kDa (PDI =
1.44), as compared to 2.7 kDa (PDI = 1.30) measured in CHCl3.
(24) Molecular weight determination of rod-like conjugated
polymers vs coil-like polystyrene standards leads to overestimation
of the apparent molecular weight (see literature included in ref 25 for
details). The authors are aware of this systemic deviation. However,
barring alternative means to determine the molecular weight,
uncorrected molecular weights are reported.
(40) (a) Chavez, C. A.; Choi, J.; Nesterov, E. E. Macromolecules 2014,
47, 506−516. (b) Smeets, A.; Willot, P.; De Winter, J.; Gerbaux, P.;
Verbiest, T.; Koeckelberghs, G. Macromolecules 2011, 44, 6017−6025.
(c) Komber, H.; Senkovskyy, V.; Tkachov, R.; Johnson, K.; Kiriy, A.;
Huck, W. T. S.; Sommer, M. Macromolecules 2011, 44, 9164−9172.
(d) Tkachov, R.; Senkovskyy, V.; Komber, H.; Sommer, J.-U.; Kiriy, A.
J. Am. Chem. Soc. 2010, 132, 7803−7810. (e) Doubina, N.; Stoddard,
M.; Bronstein, H. A.; Jen, A. K.-Y.; Luscombe, C. K. Macromol. Chem.
Phys. 2009, 210, 1966−1972. (f) Senkovskyy, V.; Khanduyeva, N.;
Komber, H.; Oertel, U.; Stamm, M.; Kuckling, D.; Kiriy, A. J. Am.
Chem. Soc. 2007, 129, 6626−6632.
(41) Ortho-substituted nickel−aryl complexes are generally found to
be more stable than unsubstituted derivatives. See also (a) Hidai, M.;
Kashiwagi, T.; Ikeuchi, T.; Uchida, Y. J. Organomet. Chem. 1971, 30,
279−282. (b) Chatt, J.; Shaw, B. L. J. Chem. Soc. 1960, 1718−1729.
(42) Achord, B. C.; Rawlins, J. W. Macromolecules 2009, 42, 8634−
8639.
I
dx.doi.org/10.1021/ma501213g | Macromolecules XXXX, XXX, XXX−XXX