5308
T. Nobuta et al. / Tetrahedron Letters 53 (2012) 5306–5308
3915; (c) Murahashi, S.; Naota, T.; Ito, K.; Maeda, Y.; Taki, H. J. Org. Chem. 1987,
52, 4319–4327.
hyde 5, which is transformed to acetal 6 under the reaction condi-
tions in alcohol. Acetal 6 is oxidized to aromatic ester 2 under aer-
obic photooxidative conditions.
14. (a) Parreira, L. A.; Bogdanchikova, N.; Pestryakov, A.; Zepeda, T. A.; Tuzovskaya,
I.; Farias, M. H.; Gusevskaya, E. V. Appl. Catal., A 2011, 397, 145–152; (b)
Miyamura, H.; Yasukawa, T.; Kobayashi, S. Green Chem. 2010, 12, 776–778; (c)
Kaizuka, K.; Miyamura, H.; Kobayashi, S. J. Am. Chem. Soc. 2010, 132, 15096–
15098; (d) Klitgaard, S. K.; DeLa Riva, A. T.; Helveg, S.; Werchmeister, R. M.;
Christensen, C. H. Catal. Lett. 2008, 126, 213–217; (e) Su, F.-Z.; Ni, J.; Sun, H.;
Cao, Y.; He, H.-Y.; Fan, K.-N. Chem. Eur. J. 2008, 14, 7131–7135; (f) Nielsen, I. S.;
Taarning, E.; Egeblad, K.; Madsen, R.; Christensen, C. H. Catal. Lett. 2007, 116,
35–40.
In conclusion, we have developed an aerobic photooxidative
synthesis method of aromatic esters in the presence of a catalytic
amount of CBr4. This method is of great value from the viewpoint
of green chemistry and organic synthesis because it uses inexpen-
sive bromine source, harmless visible light irradiated from a
general purpose fluorescent lamp, and molecular oxygen as the
terminal oxidant. Further application of this photooxidation reac-
tion to other reactions is now in progress in our laboratory.
15. (a) Liu, C.; Wang, J.; Meng, L.; Deng, Y.; Li, Y.; Lei, A. Angew. Chem., Int. Ed. 2011,
50, 5144–5148; (b) Gowrisankar, S.; Neumann, H.; Beller, M. Angew. Chem., Int.
Ed. 2011, 50, 5139–5143.
16. For recent reports, see: (a) Tada, N.; Ikebata, Y.; Nobuta, T.; Hirashima, S.-I.;
Miura, T.; Itoh, A. Photochem. Photobiol. Sci. 2012, 11, 616–619; (b) Tada, N.;
Shomura, M.; Cui, L.; Nobuta, T.; Miura, T.; Itoh, A. Synlett 2011, 2896–2900; (c)
Tada, N.; Matsusaki, Y.; Miura, T.; Itoh, A. Chem. Pharm. Bull. 2011, 59, 906–908;
(d) Tada, N.; Hattori, K.; Nobuta, T.; Miura, T.; Itoh, A. Green Chem. 2011, 13,
1669–1671; (e) Tada, N.; Ban, K.; Nobuta, T.; Hirashima, S.-I.; Miura, T.; Itoh, A.
Synlett 2011, 1381–1384; (f) Tada, N.; Ban, K.; Ishigami, T.; Nobuta, T.; Miura,
T.; Itoh, A. Tetrahedron Lett. 2011, 52, 3821–3824; (g) Nobuta, T.; Tada, N.;
Hattori, K.; Hirashima, S.-I.; Miura, T.; Itoh, A. Tetrahedron Lett. 2011, 52, 875–
877; (h) Nobuta, T.; Hirashima, S.-I.; Tada, N.; Miura, T.; Itoh, A. Org. Lett. 2011,
13, 2576–2579; (i) Cui, L.; Tada, N.; Okubo, H.; Miura, T.; Itoh, A. Green Chem.
2011, 13, 2347–2350; (j) Tada, N.; Shomura, M.; Nakayama, H.; Miura, T.; Itoh,
A. Synlett 2010, 1979–1983; (k) Tada, N.; Cui, L.; Okubo, H.; Miura, T.; Itoh, A.
Chem. Commun. 2010, 46, 1772–1774; (l) Tada, N.; Cui, L.; Okubo, H.; Miura, T.;
Itoh, A. Adv. Synth. Catal. 2010, 352, 2383–2386; (m) Tada, N.; Ban, K.; Yoshida,
M.; Hirashima, S.-I.; Miura, T.; Itoh, A. Tetrahedron Lett. 2010, 51, 6098–6100;
(n) Tada, N.; Ban, K.; Hirashima, S.-I.; Miura, T.; Itoh, A. Org. Biomol. Chem. 2010,
8, 4701–4704; (o) Nobuta, T.; Hirashima, S.-I.; Tada, N.; Miura, T.; Itoh, A.
Tetrahedron Lett. 2010, 51, 4576–4578; (p) Nobuta, T.; Hirashima, S.-I.; Tada,
N.; Miura, T.; Itoh, A. Synlett 2010, 2335–2339; (q) Kanai, N.; Nakayama, H.;
Tada, N.; Itoh, A. Org. Lett. 2010, 12, 1948–1951.
References and notes
1. Comprehensive Organic Transformations; Larock, R. C., Ed., 2nd ed.; Wiley-VCH:
New York, 1999. p 1646.
2. McDonald, C. E.; Nice, L. E.; Shaw, A. W.; Nestor, N. B. Tetrahedron Lett. 1993, 34,
2741–2744.
3. Hiegel, G. A.; Gilley, C. B. Synth. Commun. 2003, 33, 2003–2009.
4. Mori, N.; Togo, H. Tetrahedron 2005, 61, 5915–5925.
5. Reddy, K. R.; Venkateshwar, M.; Maheswari, C. U.; Prashanthi, S. Synth.
Commun. 2010, 40, 186–195.
6. Shaikh, T. M. A.; Emmanuvel, L.; Sudalai, A. Synth. Commun. 2007, 37,
2641–2646.
7. (a) Liu, X.-L.; Lin, S.-Y.; Sheng, S.-R.; Wei, M.-H.; Gong, B. J. Chin. Chem. (Taipei,
Taiwan) 2007, 54, 1119–1122; (b) Karade, N. N.; Tiwari, G. B.; Huple, D. B.
Synlett 2005, 2039–2042.
8. Tohma, H.; Maegawa, T.; Kita, Y. Synlett 2003, 723–725.
9. Khusnutdinov, R. I.; Shchadneva, N. A.; Burangulova, R. Y.; Muslimov, Z. S.;
Dzhemilev, U. M. Russ. J. Org. Chem. 2006, 42, 1615–1621.
10. (a) Foot, J. S.; Kanno, H.; Giblin, G. M. P.; Taylor, R. J. K. Synthesis 2003,
1055–1064; (b) Foot, J. S.; Kanno, H.; Giblin, G. M. P.; Taylor, R. J. K. Synlett
2002, 1293–1295.
17. Hirashima, S.; Nobuta, T.; Tada, N.; Miura, T.; Itoh, A. Org. Lett. 2010, 12, 3645–
3647.
18. Typical procedure: A solution of 4-tert-butylbenzyl alcohol (1a, 0.3 mmol) and
CBr4 (0.09 mmol) in dry MeOH (4 mL) in a pyrex test tube, purged with an O2-
balloon, was stirred and irradiated externally with four 22 W fluorescent lamps
for 20 h. The reaction mixture was concentrated in vacuo. Purification of the
crude product by PTLC (toluene) provided methyl 4-tert-butylbenzoate (2a)
(Rf = 0.40, 54.0 mg, 94%).
11. Tamaru, Y.; Yamada, Y.; Inoue, K.; Yamamoto, Y.; Yoshida, Z. J. Org. Chem. 1983,
48, 1286–1292.
12. (a) Yamamoto, N.; Obora, Y.; Ishii, Y. J. Org. Chem. 2011, 76, 2937–2941; (b)
Suzuki, T.; Matsuo, T.; Watanabe, K.; Katoh, T. Synlett 2005, 1453–1455.
13. (a) Owston, N. A.; Nixon, T. D.; Parker, A. J.; Whittlesey, M. K.; Williams, J. M. J.
Synthesis 2009, 1578–1581; (b) Minami, I.; Tsuji, J. Tetrahedron 1987, 43, 3903–