a
Table 1. Cross-Coupling of Thiophenol with Aryl Iodide
Table 2. Indium Oxide Amount Screening for the C-S
a
Coupling
b
entry
base
solvent
temp (°C)
yield (%)
b
entry
In
O
2 3
(mol %)
yield (%)
1
2
3
4
5
6
7
8
9
K
Cs
KO Bu
KOH
KOH
KOH
NaOMe
K
Cs
KO Bu
KOH
KOH
Cs
KOH
none
3
PO
4
DMSO
DMSO
DMSO
DMSO
DMSO
DMSO
DMSO
DMF
PhMe
PhMe
PhMe
DMF
135
135
135
135
80
trace
69
trace
97
CO
3
1
2
3
4
5
1.0
67
80
88
97
97
2
t
2.0
2.5
3.0
3.5
78
rt
0
135
135
135
135
135
135
135
135
135
trace
0
a
Reaction conditions: Iodobenzene (1.1 mmol), benzenethiol (1.0 mmol),
b
3
PO
4
In
2
O
3
(mol%), KOH (2.0 equiv), DMSO (2.0 mL), 135 °C, 24 h. Isolated
c
yield. Sulfur source (0.5 mmol).
2
CO
3
0
0
t
10
11
12
13
14
15
trace
trace
trace
0
Over the past decades, Pd, Cu, Ni, and Fe based catalysts
were explored for cross-coupling reactions. However until
now there has been no report on indium catalyzed cross-
coupling reaction. We attempted C-S cross-coupling with
indium. Recently, nanoparticles have been employed as
heterogeneous catalysts for various organic transforma-
2
CO
3
DMF
Water
DMSO
0
a
Reaction conditions: Iodobenzene (1.1 mmol), benzenethiol (1.0 mmol)
3
(3.0 mol %), base (2.0 equiv), solvent (2.0 mL), 24 h, under a nitrogen
In
2
O
b
atmosphere. Isolated yield.
9
k,13
tions.
This inspired us to focus on the aspect of indium
11
ligand, CoI
2
(dppe), and Zn has also been reported recently.
oxide nanoparticle catalysis for the formation of aryl-sulfur
bonds. The heterogeneous catalysts are also attractive both
from economic and industrial points of view as compared
to homogeneous catalysts. In general, nanoscale heteroge-
neous catalysts offer higher surface area and lower-
coordinating sites, which are responsible for the higher
However, almost all of these methods involve ligands or
well-defined catalysts and these protocols have common
problems such as metal toxicity, low turnover numbers,
excess reagents and nonrecyclability of these catalysts, thus
increasing the cost and limiting the scope of the reaction.
Recently Koten and co-workers reported copper-catalyzed
C-S coupling of aryl iodides and thiols under ligand free
conditions. However, this protocol reports a lone example
of aliphatic thiol, butanethiol, in lower yields (54%) and also
14
catalytic activity. However, until now, the investigation of
nanoparticles as catalysts has been scarce.
12
the catalyst cannot be recycled. In this regard we envisaged
the application of readily available and inexpensive nano-
particles as catalysts.
2 3
Table 3. Nano In O Catalyzed C-S Cross-Coupling of
a
Iodobenzene with Different Sulfur Sources
(
7) (a) Mispelaere-Canivet, C.; Spindler, J.-F.; Perrio, S.; Beslin, P.
Tetrahedron 2005, 61, 5253. (b) Itoh, T.; Mase, T. Org. Lett. 2004, 6, 4587.
c) Fernandez Rodriguez, M. A.; Shen, Q.; Hartwig, J. F. J. Am. Chem.
Soc. 2006, 128, 2180. (d) Murata, M.; Buchwald, S. L. Tetrahedron 2004,
0, 7397. (e) Schopfer, U.; Schlapbach, A. Tetrahedron 2001, 57, 3069.
f) Li, G. Y. Angew. Chem., Int. Ed. 2001, 40, 1513. (g) BarbiKri, R. S.;
Bellato, C. R.; Dias, A. K. C.; Massabni, A. C. Catal. Lett. 2006, 109, 171.
h) Dickens, M. J.; Gilday, J. P.; Mowlem, T. J.; Widdowson, D. A.
(
6
(
(
Tetrahedron 1991, 47, 8621. (i) Ishiyama, T.; Mori, M.; Suzuki, A.;
Miyaura, N. J. Organomet. Chem. 1996, 525, 225. (j) Zheng, N.;
McWilliams, J. C.; Fleitz, F. J.; Armstrong, J. D.; Volante, R. P. J. Org.
Chem. 1998, 63, 9606. (k) Mann, G.; Baranano, D.; Hartwig, J. F.;
Rheingold, A. L.; Guzei, I. A. J. Am. Chem. Soc. 1998, 120, 9205.
(
8) (a) Cristau, H. J.; Chabaud, B.; Chene, A.; Christol, H. Synthesis
a
1
981, 892. (b) Millois, C.; Diaz, P. Org. Lett. 2000, 2, 1705. (c) Percec,
Reaction conditions: Iodobenzene (1.1 mmol), sulfur source (1.0
V.; Bae, J.-Y.; Hill, D. H. J. Org. Chem. 1995, 60, 6895. (d) Takagi, K.
Chem. Lett. 1987, 2221.
mmol), In O (3.0 mol %), KOH (2.0 equiv), DMSO (2.0 mL), 135 °C,
2
3
b
c
24 h. Isolated yield. Phenyl disulfide (0.5 mmol).
(
9) (a) Bates, C. G.; Gujadhur, R. K.; Venkataraman, D. Org. Lett. 2002,
4
, 2803. (b) Kwong, F. Y.; Buchwald, S. L. Org. Lett. 2002, 4, 3517. (c)
Wu, Y.-J.; He, H. Synlett. 2003, 1789. (d) Bates, C. G.; Saejueng, P.;
Doherty, M. Q.; Venkataraman, D. Org. Lett. 2004, 6, 5005. (e) Palomo,
C.; Oiarbide, M.; Lopez, R.; Gomez- Bengoa, E. Tetrahedron Lett. 2000,
Initially, the reaction between iodobenzene and ben-
zenethiol was selected as a model reaction, and various
41, 1283. (f) Savarin, C.; Srogl, J.; Liebeskind, L. S. Org. Lett. 2002, 4,
4309. (g) Herradura, P. S.; Pendola, K. A; Guy, R. K. Org. Lett. 2000, 2,
2019. (h) Chen, Y.-J.; Chen, H.-H. Org. Lett. 2006, 8, 5609. (i) Ranu, B. C.;
Saha, A.; Jana, R. AdV. Synth. Catal. 2007, 349, 2690. (j) Ley, S. V.;
Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400. (k) Rout, L.; Sen,
T. K.; Punniyamurthy, T. Angew. Chem., Int. Ed. 2007, 46, 5583.
(13) (a) Choudary, B. M.; Kantam, M. L.; Ranganath, K. V. S.;
Mahender, K.; Sreedhar, B. J. Am. Chem. Soc. 2004, 126, 3396. (b)
Choudary, B. M.; Ranganath, K. V. S.; Pal, U.; Kantam, M. L.; Sreedhar,
(
10) Correa, A.; Carril, M.; Bolm, C. Angew. Chem., Int. Ed. 2008, 47,
B. J. Am. Chem. Soc. 2005, 127, 13167.
2
880.
(14) (a) Pacchioni, G. Surf. ReV. Lett. 2000, 7, 277. (b) Knight, W. D.;
Clemenger, K.; de Heer, W. A.; Saunders, W. A. M.; Chou, Y.; Cohen,
M. L. Phys. ReV. Lett. 1984, 52, 2141. (c) Kaldor, A.; Cox, D.; Zakin,
M. R. AdV. Chem. Phys. 1988, 70, 211.
(
11) Wong, Y.-C.; Jayanth, T. T.; Cheng, C.-H. Org. Lett. 2006, 8, 5613.
(
12) Sperotto, E.; Klink, G. P. M. V.; De Vries, J. G.; Koten, G. V. J.
Org. Chem. 2008, 73, 5625.
698
1
Org. Lett., Vol. 11, No. 8, 2009