Dynamic covalent chemistry10 (DCC) has emerged as an
efficient and versatile strategy for the synthesis of complex
molecular structures. Whereas early examples of supramo-
lecular assistance to covalent synthesis11 relied heavily on
kinetically controlled reactions for postassembly covalent
modification, DCC takes advantage of the reversible nature
of acetal,12 disulfide,13 ester,14 and imine15 bond formation,
as well as carbon-carbon bond formation during methasis16
and metal-ligand coordination,17 to allow the formation of
the new covalent bonds to be thermodynamically controlled.
The reversible formation of covalent bonds provides a means
of proofreading and editing intermediate structures to
achieve, with time, the most thermodynamically stable prod-
uct. When coupled with templation, DCC has been shown
to provide a highly efficient route to mechanically interlocked
molecules. Recent examples include a calix[4]arene-based
[8]catenane,16d multiple rotaxanes,18 interlocked dendrimers,19
and molecular Borromean rings.5 In some cases, the dynamic
covalent structures have been fixed5,18,19 through reduction
of their imine bonds to kinetically stable amine ones. Here,
we describe the use of DCC in the context of imine bond
formation, along with computational modeling, in the
template-directed synthesis of two mechanically interlocked
molecular bundles from five and six components, respec-
tively. The pool of structures from which these components
have been drawn is shown in Figure 1, and the manner in
(5) (a) Chichak, K. S.; Cantrill, S. J.; Pease, A. R.; Chiu, S.-H.; Cave,
G. W. V.; Atwood, J. L.; Stoddart, J. F. Science 2004, 304, 1308-1312.
(b) Siegel, J. S. Science 2004, 304, 1256-1258. (c) Schalley, C. A. Angew.
Chem., Int. Ed. 2004, 43, 4399-4401. (d) Chichak, K. S.; Peters, A. J.;
Cantrill, S. J.; Stoddart, J. F. J. Org. Chem. 2005, 70, 7956-7962.
(6) (a) Anderson, S.; Sanders, J. K. M. Acc. Chem. Res. 1993, 26, 469-
475. (b) Hoss, R.; Vo¨gtle, F. Angew. Chem., Int. Ed. Engl. 1994, 33, 374-
384. (c) Schneider, J. P.; Kelly, J. W. Chem. ReV. 1995, 95, 2169-2187.
(d) Raymo, F. M.; Stoddart, J. F. Pure Appl. Chem. 1996, 68, 313-322.
(e) Templated Organic Synthesis; Diederich, F., Stang, P. J., Eds.; Wiley-
VCH: Weinheim, 1999. (f) Stoddart, J. F.; Tseng, H.-R. Proc. Natl. Acad.
Sci. U.S.A. 2002, 99, 4797-4800. (g) Busch, D. H. Top. Curr. Chem. 2005,
249, 1-65.
(7) (a) Lehn, J.-M. Supramolecular Chemistry; VCH: Weinheim, 1995.
(b) Lindoy, L. F.; Atkinson, I. M. Self-Assembly in Supramolecular Systems;
Stoddart, J. F., Ed.; RSC: Cambridge, 2000. (c) Lehn, J.-M. Science 2002,
295, 2400-2403. (d) Reinhoudt, D. N.; Crego-Calama, M. Science 2002,
295, 2403-2407. (e) Meyer, E. A.; Castellano, R. K.; Diederich, F. Angew.
Chem., Int. Ed. 2003, 42, 1210-1250.
Figure 1. Structural formulas of the trisammonium ion template
TAT-H3‚3PF6, the formyl derivatives (CHO)-DP24C8 and (CHO)2-
DP24C8 of dipyrido[24]crown-8 (DP24C8), and 1,3,5-trisami-
nobenzene (TAB). The proton descriptors employed in Figures 2
and 4 are defined on the four structural formulas.
(8) (a) Lindsey, J. S. New J. Chem. 1991, 15, 153-180. (b) Philp, D.;
Stoddart, J. F. Angew. Chem., Int. Ed. 1996, 35, 1154-1195. (c) Fujita, M.
Acc. Chem. Res. 1999, 32, 53-61. (d) Rebek, J., Jr. Acc. Chem. Res. 1999,
32, 278-286. (e) Bong, D. T.; Clark, T. D.; Granja, J. R.; Ghadiri, M. R.
Angew. Chem., Int. Ed. 2001, 40, 988-1011. (f) Seidel, S. R.; Stang, P. J.
Acc. Chem. Res. 2002, 35, 972-983. (g) Yaghi, O. M.; O’Keeffe, M.;
Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Nature 2003, 423,
705-714.
which they have been employed in the two syntheses is
outlined in Scheme 1. The supramolecular assistance to
covalent synthesis11 is provided by hydrogen bonding
between crown ether derivatives and secondary dialkylam-
monium ion centers, and the DCC uses imine bond formation
to link together three individually derivatized crown ethers,
carrying either one or two formyl groups, singly or doubly,
with a trigonal capping reagent20 displaying the three
matching amine functions.
(9) For a preliminary discussion of the mechanically interlocked mol-
ecules beyond catenanes and rotaxanes, see: Chang, T.; Heiss, A. M.;
Cantrill, S. J.; Fyfe, M. C. T.; Pease, A. R.; Rowan, S. J.; Stoddart, J. F.;
Williams, D. J. Org. Lett. 2000, 2, 2943-2946.
(10) Rowan, S. J.; Cantrill, S. J.; Cousins, G. R. L.; Sanders, J. K. M.;
Stoddart, J. F. Angew. Chem., Int. Ed. 2002, 41, 898-952.
(11) For examples of the kinetic approach, see: (a) Fyfe, M. C. T.;
Stoddart, J. F. Acc. Chem. Res. 1997, 30, 393-401. (b) Rowan, S. J.;
Cantrill, S. J.; Stoddart, J. F. Org. Lett. 1999, 1, 129-132.
Complexation occurs immediately upon addition of 3.0
equiv of (CHO)-DP24C8 to TAT-H3‚3PF6 in CD3NO2, as
(12) (a) Fuchs, B.; Nelson, A.; Star, A.; Stoddart, J. F.; Vidal, S. Angew.
Chem., Int. Ed. 2003, 42, 4220-4242. (b) Cacciapaglia, R.; Di Stefano, S.;
Mandolini, L. J. Am. Chem. Soc. 2005, 127, 13666-13671.
(17) (a) Fujita, M.; Ibukuro, F.; Hagaira, H.; Ogura, K. Nature 1994,
367, 720-725. (b) Baer, A. J.; Macartney, D. H. Inorg. Chem. 2000, 39,
1410-1417. (c) Chichak, K. S.; Walsh, M. C.; Branda, N. R. Chem.
Commun. 2000, 847-848. (d) Gunter, M. J.; Bampos, N.; Johnstone, K.
D.; Sanders, J. K. M. New J. Chem. 2001, 25, 166-173. (e) Stulz, E.; Ng,
Y.-F.; Scott, S. M.; Sanders, J. K. M. Chem. Commun. 2002, 524-525. (f)
Kubota, Y.; Sakamoto, S. S.; Yamaguchi, K.; Fujita, M. Proc. Natl. Acad.
Sci. U.S.A. 2002, 99, 4854-4856. (g) Yoshizawa, M.; Nakagawa, J.;
Kurnazawa, K.; Nagao, M.; Kawano, M.; Ozeki, T.; Fujita, M. Angew.
Chem., Int. Ed. 2005, 44, 1810-1813.
(18) Arico´, F.; Chang, T.; Cantrill, S. J.; Khan, S. I.; Stoddart, J. F.
Chem.-Eur. J. 2005, 11, 4655-4666.
(19) Leung, K. C.-F.; Arico´, F.; Cantrill, S. J.; Stoddart, J. F. J. Am.
Chem. Soc. 2005, 127, 5808-5810.
(13) (a) Kolchinski, A. G.; Alcock, N. W.; Roesner, R. A.; Busch, D.
H. Chem. Commun. 1998, 1437-1438. (b) Hioki, H.; Still, W. C. J. Org.
Chem. 1998, 63, 904-905. (c) Otto, S.; Furlan, R. L. E.; Sanders, J. K. M.
J. Am. Chem. Soc. 2000, 122, 12063-12064. (d) Ramstro¨m, O.; Lehn, J.-
M. ChemBioChem 2000, 1, 41-48. (e) Otto, S.; Furlan, R. L. E.; Sanders,
J. K. M. Science 2002, 297, 590-593. (f) Brisig, B.; Sanders, J. K. M.;
Otto, S. Angew. Chem., Int. Ed. 2003, 42, 1270-1273. (g) Horikoshi, R.;
Mikuriya, M. Cryst. Growth Des. 2005, 5, 223-230.
(14) (a) Brady, P. A.; Sanders, J. K. M. J. Chem. Soc., Perkin Trans. 1
1997, 3237-3253. (b) Rowan, S. J.; Sanders, J. K. M. J. Org. Chem. 1998,
63, 1536-1546. (c) Kaiser, G.; Sanders, J. K. M. Chem. Commun. 2000,
1763-1764.
(15) (a) Layer, W. R. Chem. ReV. 1963, 63, 489-510. (b) Dayagi, S.;
Degani, Y. In The Chemistry of the Carbon-Nitrogen Double Bond; Patai,
S., Ed.; Interscience: New York, 1970; pp 64-83. (c) Huc, I.; Lehn, J.-M.
Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 2106-2110.
(16) (a) Kidd, T. J.; Leigh, D. A.; Wilson, A. J. J. Am. Chem. Soc. 1999,
121, 1599-1600. (b) Weck, M.; Mohr, B.; Sauvage, J.-P.; Grubbs, R. H.
J. Org. Chem. 1999, 64, 5463-5471. (c) Kilbinger, A. F. M.; Cantrill, S.
J.; Waltman, A. W.; Day, M. W.; Grubbs, R. H. Angew. Chem., Int. Ed.
2003, 42, 3281-3285. (d) Wang, L.; Myroslav, O. V.; Bogdan, A.; Bolte,
M.; Bo¨hmer, V. Science 2004, 304, 1312-1214. (e) Guidry, E. N.; Cantrill,
S. J.; Stoddart, J. F.; Grubbs, R. H. Org. Lett. 2005, 7, 2129-2132.
(20) While the templating effect of -CH2NH2+CH2- centers located in
dumbbell components have been used to activate the formation of two imine
bonds in macrocyclic polyethers to form rotaxanes in a process known as
clipping (Glink, P. T.; Oliva, A. I.; Stoddart, J. F.; White, A. J. P.; Williams,
D. J. Angew. Chem., Int. Ed. 2001, 40, 1870-1875. Horn, H.; Ihringer, I.;
Glink, P. T.; Stoddart, J. F. Chem.-Eur. J. 2003, 9, 4040-4054.), the
capping process described in this letter is more reminescent of forming
rotaxanes under thermodynamic control by imine exchange (Rowan, S. J.;
Stoddart, J. F. Org. Lett. 1999, 1, 1913-1916. Cantrill, S. J.; Rowan, S. J.;
Stoddart, J. F. Org. Lett. 1999, 1, 1363-1366).
3900
Org. Lett., Vol. 8, No. 18, 2006