J. Am. Chem. Soc. 1999, 121, 1411-1412
1411
Scheme 1a
Chemoenzymatic Synthesis of the 9-Deoxy-
9-fluoro-[3-13C]-NeuAc-r-(2f6)-[U-13C]-Gal-â-
Sequence on an Intact Glycoprotein
Tatsuo Miyazaki,† Tohru Sakakibara,† Hajime Sato,‡ and
Yasuhiro Kajihara*,†
Graduate School of Integrated Science, and Faculty of Science
Yokohama City UniVersity, 22-2, Seto, Kanazawa-ku
Yokohama 236-0027, Japan
Bruker Japan Co., Ltd.
21-5, Ninomiya, 3-chome, Tsukuba
Ibaraki 305-0051, Japan
ReceiVed August 17, 1998
The synthesis of sialyloligosaccharides and their analogues has
enabled researchers to study the conformation and the structure-
function relationship of these important cellular components.1
However, the synthesis of sialyloligosaccharide analogues on
intact glycoprotein backbones has proven far more difficult than
the chemical synthesis of gangliosides and their analogues.2 If
sialyloligosaccharide analogues synthesized on glycoprotein
backbones could be easily analyzed by NMR, we would be able
to study the dynamics and conformation of sialyloligosaccharide
analogues on proteins. Recent research using glycosyltransferases
has centered on the transfer of a sugar analogue to the nonreducing
terminal of the oligosaccharide of a glycoprotein.3 However, in
most cases, analysis by NMR of the resulting sugar analogue is
difficult due to overlap with the proton resonances of the amino
acids in the protein.4,5 We report here a concise 13C-labeling6
method of a NeuAc analogue, synthesis of the 9-deoxy-9-fluoro-
[3-13C]-NeuAc-R-(2f6)-[U-13C]-Gal-â- sequence on an intact
glycoprotein by sialyl (STase) and galactosyltransferase (GTase),
and its structure analysis by NMR.
a Reagents: (a) aldolase, lactate dehydrogenase, â-NADH, yields are
summarized in Table 1; (b) aldolase, [3-13C]-sodium pyruvate, yields are
summarized in Table 1; (c) (1) Dowex 50W-X8 (H+), MeOH, (2) HClO4,
Ac2O, y ) 82%; (d) (1) 1H-tetrazole, MeCN, (2) t-BuOOH, MeCN, (3)
DBU, THF, (4) NaOMe, MeOH:H2O ) 1:2, y ) 27%; (e) UDP-[U-
13C]-glucose, UDP-glucose-4-epimerase, bovine â-(1f4)-galactosyltrans-
ferase; (f) (1) reaction of bacterium R-(2f6)-sialyltransferase (three
times), 11, (2) Diplococcus pneumoniae â-galactosidase.
Table 1. Stable Isotope Labeling of NeuAc Analogues by Use of
NeuAc Aldolasea
ManNAc analogue
[3-13C]-Neu5Ac analogue
Since a large number of NeuAc analogues have been synthe-
aldolase aldolase +
sized from NeuAc,7 their synthetic route including selective
substrate R1 R2
(%)c LDHb (%)d
product
(%)e
† Yokohama City University.
1
2
3
4
OH OH 69%
90%
5
6
7
8
87%
91%
93%
90%
‡ Bruker Japan Co., Ltd.
F
OH 48%
94%
98%
45%
(1) (a) Sabesan, S.; Bock, K.; Paulson, J. C. Carbohydr. Res. 1991, 218,
27-54. (b) Ichikawa, Y.; Lin, Y.-C.; Dumas, D. P.; Shen, G.-J.; Garcia-
Junceda, E.; Williams, M. A.; Bayer, R.; Ketcham, C.; Walker, L. E.; Paulson,
J. C.; Wong, C.-H. J. Am. Chem. Soc. 1992, 114, 9283-9298. (c) Sabesan,
S.; Neira, S.; Davison, F.; Duus, J. O.; Bock, K. J. Am. Chem. Soc. 1994,
116, 1616-1634. (d) Salvatore, B. A.; Ghose, R.; Prestegard, J. H. J. Am.
Chem. Soc. 1996, 118, 4001-4008.
(2) (a) Hasegawa, A.; Kiso, M.; Ishida, H. In Methods in Enzymology; Lee,
Y. C.; Lee, R. T., Eds.; 1994; Vol. 242, pp 158-197. (b) Ogawa, T. Chem.
Soc. ReV. 1994, 23, 397-407.
N3 OH 60%
OH H
26%
a Conversion yields were determined by NMR spectra. b LDH:lactate
dehydrogenase. c Reaction used NeuAc analogue (32 mM) and aldolase
(3.8 U). d Reaction used NeuAc analogue (32 mM), aldolase (3.8 U),
and LDH (20 U). e Reaction used ManNAc analogue (63 mM) and
aldolase (10 U).
(3) (a) Higa, H. H.; Paulson, J. C. J. Biol. Chem. 1985, 260, 8838-8849.
(b) Gross, H. J.; Brossmer, R. Eur. J. Biochem. 1988, 177, 583-589. (c)
Kajihara, Y.; Endo, T.; Ogasawara, H.; Kodama, H.; Hashimoto, H. Carbohydr.
Res. 1995, 269, 273-294. (d) Witte, K.; Sears, P.; Martin, R.; Wong, C.-H.
J. Am. Chem. Soc. 1997, 119, 2114-2118.
protection of hydroxyl groups has become fairly common.
Therefore, if [3-13C]-NeuAc analogues can be obtained from
NeuAc analogues, the published route for the NeuAc analogues
will be practically utilized. As is shown in Scheme 1, we
performed the aldolase reaction twice: first, degradation8 of the
NeuAc analogue to a ManNAc analogue and, second, condensa-
tion of the ManNAc analogue with [3-13C]-pyruvic acid. However,
degradation of analogues 2-4 did not afford ManNAc analogues
in sufficient yields (26-69%) due to the competing reverse
reaction. Therefore, the reactions were run in the presence of
lactate dehydrogenase in order to push the equilibrium toward
the ManNAc analogues. When 1 equiv of â-NADH was used,
the degradation yields increased to the range 45-98% (Table 1).
After purification, ManNAc analogues were condensed with 3
equiv of [3-13C]-pyruvic acid. Among these analogues, the fluoro
analogue 6 in which the fluorine atom can be utilized for
(4) Two research groups have performed transfer of 13C-labeled galactose
by galactosyltransferase in order to analyze galactoside on protein, see: (a)
Goux, W. J.; Perry, C.; James, T. L. J. Biol. Chem. 1982, 257, 1829-1835.
(b) Gilhespy-Muskett, A. M.; Partridge, J.; Homans, S. W. Glycobiology 1994,
4, 485-489.
(5) Analysis of a glycan chain on small proteins (less than 15 KDa) could
be performed, see: (a) Berman, E.; Walters, D. E.; Allerhand, A. J. Biol.
Chem. 1981, 256, 3853-3857. (b) de Beer, T.; van Zuylen, C. W. E. M.;
Hård, K.; Boelens, R.; Kaptein, R.; Kamerling, J. P.; Vliegenthart, J. F. G.
FEBS Lett. 1994, 348, 1-6.
(6) 13C-labeling of carbohydrates is convenient for conformational analysis:
(a) Low, D. G.; Probert, M. A.; Embleton, G.; Sehadri, K.; Field, R. A.;
1b,d
Homans, S. W.; Windust, J.; Davis, P. J. Glycobiology 1997, 7, 373-381.
(b) Probert, M. A.; Milton, M. J.; Harris, R.; Schenkman, S.; Brown, J. M.;
Homans, S. W.; Field, R. A. Tetrahedron Lett. 1997, 38, 5861-5864. (c)
Bose, B.; Zhao, S.; Stenutz, R.; Cloran, F.; Bondo, P. B.; Bondo, G.; Hertz,
B.; Carmichael, I.; Serianni, A. S. J. Am. Chem. Soc. 1998, 120, 11158-
11173.
(7) Ogura, H.; Hasegawa, A.; Suami, T. Carbohydrates Synthetic Methods
and Applications in Medicinal Chemistry; KODANSHA, Tokyo, 1992; pp
243-339.
(8) Synthesis of 14C-labeled N-glycoylneuraminic acid in analytical scale
see: Terada, T.; Kitazume, S.; Kitajima, K.; Inoue, S.; Ito, F.; Troy, F. A.;
Inoue, T. J. Biol. Chem. 1993, 268, 2640-2648.
10.1021/ja982950e CCC: $18.00 © 1999 American Chemical Society
Published on Web 01/29/1999