Inorganic Chemistry
Article
−
2014, 114, 3659−3853. (b) Mirica, L. M.; Ottenwaelder, X.; Stack, T.
D. P. Structure and Spectroscopy of Copper−Dioxygen Complexes.
Chem. Rev. 2004, 104, 1013−1045. (c) Lewis, E. A.; Tolman, W. B.
Reactivity of Dioxygen−Copper Systems. Chem. Rev. 2004, 104,
1047−1076. (d) Elwell, C. E.; Gagnon, N. L.; Neisen, B. D.; Dhar, D.;
Spaeth, A. D.; Yee, G. M.; Tolman, W. B. Copper−Oxygen
Complexes Revisited: Structures, Spectroscopy, and Reactivity.
Chem. Rev. 2017, 117, 2059−2107. (e) Allen, S. E.; Walvoord, R.
R.; Padilla-Salinas, R.; Kozlowski, M. C. Aerobic Copper-Catalyzed
Organic Reactions. Chem. Rev. 2013, 113, 6234−6458. (f) Serrano-
Plana, J.; Garcia-Bosch, I.; Company, A.; Costas, M. Structural and
Reactivity Models for Copper Oxygenases: Cooperative Effects and
Novel Reactivities. Acc. Chem. Res. 2015, 48, 2397−2406. (g) Copper-
Oxygen Chemistry;Karlin, K. D., Itoh, S., Rokita, S., Eds.; Wiley Series
of Reactive Intermediates in Chemistry and Biology; John Wiley &
Sons, Inc.: Hoboken, NJ, 2011; Vol. 4.
(2) Donoghue, P. J.; Tehranchi, J.; Cramer, C. J.; Sarangi, R.;
Solomon, E. I.; Tolman, W. B. Rapid C−H Bond Activation by a
Monocopper(III)−Hydroxide Complex. J. Am. Chem. Soc. 2011, 133,
17602−17605.
(3) Dhar, D.; Tolman, W. B. Hydrogen Atom Abstraction from
Hydrocarbons by a Copper(III)-Hydroxide Complex. J. Am. Chem.
Soc. 2015, 137, 1322−1329.
Bearing Pendant SO3 Groups. Angew. Chem., Int. Ed. 2015, 54,
7981−7984. (b) Hardouin Duparc, V.; Schaper, F. Sulfonato-imino
copper(II) complexes: fast and general Chan−Evans−Lam coupling
of amines and anilines. Dalton Trans. 2017, 46, 12766−12770.
(c) Hardouin Duparc, V.; Schaper, F. Sulfonato-diketimine Copper-
(II) Complexes: Synthesis and Application as Catalysts in Chan−
Evans−Lam Couplings. Organometallics 2017, 36, 3053−3060.
(12) Taylor, R.; Kennard, O.; Versichel, W. Geometry of the N-H-O
= C Hydrogen Bond. 2. Three-Center (“Bifurcated”) and Four-
Center (“Trifurcated”) Bonds. J. Am. Chem. Soc. 1984, 106, 244−248.
(13) Yang, L.; Powell, D. R.; Houser, R. P. Structural variation in
copper(I) complexes with pyridylmethylamide ligands: structural
analysis with a new four-coordinate geometry index, τ4. Dalton
Transactions 2007, 9, 955−964.
(14) Spaeth, A. D.; Gagnon, N. L.; Dhar, D.; Yee, G. M.; Tolman,
W. B. Determination of the Cu(III)-OH Bond Distance by Resonance
Raman Spectroscopy Using a Normalized Version of Badger’s Rule. J.
Am. Chem. Soc. 2017, 139, 4477−4485.
(15) This ionic interaction between the SO3− group and the [K(18-
C-6)]+ is accompanied by severe positional disorder in the X-ray
−
structure, which results from the rotation of the SO3 group that is
coupled with rotational disorder in the crown moieties. As a result,
−
both the SO3 groups and the coupled [K(18-C-6)]+ fragments
(4) Dhar, D.; Yee, G. M.; Spaeth, A. D.; Boyce, D. W.; Zhang, H.;
Dereli, B.; Cramer, C. J.; Tolman, W. B. Perturbing the Copper(III)-
Hydroxide Unit through Ligand Structural Variation. J. Am. Chem.
Soc. 2016, 138, 356−368.
(5) Dhar, D.; Yee, G. M.; Markle, T. F.; Mayer, J. M.; Tolman, W. B.
Reactivity of the Copper(III)-Hydroxide Unit with Phenols. Chem.
Sci. 2017, 8, 1075−1085.
needed to be modeled using a two-part disorder component.
(16) Murata, M.; Kojima, M.; Kita, M.; Kashino, S.; Yoshikawa, Y. A
Stable Sulfonato-Cobalt(III) Complex: Δ-[Co{OS-
(O)2CH2CH2NH2-N,O}(en)2]-(ClO4)2. Acta Crystallogr. 1997, C53,
1761−1762.
(17) The UV−vis and EPR spectra for 4a and 4b are identical
(6) (a) Frandsen, K. E. H.; Simmons, T. J.; Dupree, P.; Poulsen, J.-
C. N.; Hemsworth, G. R.; Ciano, L.; Johnston, E. M.; Tovborg, M.;
Johansen, K. S.; von Freiesleben, P.; Marmuse, L.; Fort, S.; Cottaz, S.;
Driguez, H.; Henrissat, B.; Lenfant, N.; Tuna, F.; Baldansuren, A.;
Davies, G. J.; Lo Leggio, L.; Walton, P. H. The molecular basis of
polysaccharide cleavage by lytic polysaccharide monooxygenases. Nat.
Chem. Biol. 2016, 12, 298−303. (b) Quist, D. A.; Diaz, D. E.; Liu, J. J.;
Karlin, K. D. Activation of dioxygen by copper metalloproteins and
insights from model complexes. JBIC, J. Biol. Inorg. Chem. 2017, 22,
253−288. (c) Hedegård, E. D.; Ryde, U. Targeting the reactive
intermediate in polysaccharide monooxygenases. JBIC, J. Biol. Inorg.
Chem. 2017, 22, 1029−1037.
(7) (a) Shook, R. L.; Borovik, A. S. Role of the secondary
coordination sphere in metal-mediated dioxygen activation. Inorg.
Chem. 2010, 49, 3646−3660. (b) Cook, S. A.; Borovik, A. S.
Molecular designs for controlling the local environments around
metal ions. Acc. Chem. Res. 2015, 48, 2407−2414. (c) Mann, S. I.;
Heinisch, T.; Ward, T. R.; Borovik, A. S. Peroxide activation regulated
by hydrogen bonds within artificial Cu proteins. J. Am. Chem. Soc.
2017, 139, 17289−17292. (d) Creutz, S. E.; Peters, J. C. Exploring
secondary-sphere interactions in Fe-NxHy complexes relevant to N2
fixation. Chem. Sci. 2017, 8, 2321−2328.
(8) (a) Wang, D.; Groves, J. T. Efficient water oxidation catalyzed by
homogeneous cationic cobalt porphyrins with critical roles for the
buffer base. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 15579−15584.
(b) Bell, S. R.; Groves, J. T. A Highly Reactive P450 Model
Compound I. J. Am. Chem. Soc. 2009, 131, 9640−9641. (c) Gao, H.;
Groves, J. T. Fast Hydrogen Atom Abstraction by a Hydroxo
Iron(III) Porphyrazine. J. Am. Chem. Soc. 2017, 139, 3938−3941.
(9) Nakano, K.; Kamada, T.; Nozaki, K. Selective formation of
polycarbonate over cyclic carbonate: Copolymerization of epoxides
with carbon dioxide catalyzed by a cobalt(III) complex with a
piperidinium end-capping arm. Angew. Chem., Int. Ed. 2006, 45,
7274−7277.
(18) (a) Bales, B. L.; Peric, M. EPR Line Shifts and Line Shape
Changes Due to Spin Exchange of Nitroxide Free Radicals in Liquids.
J. Phys. Chem. B 1997, 101, 8707−8716. (b) Bales, B. L.; Meyer, M.;
Smith, S.; Peric, M. EPR Line Shifts and Line Shape Changes due to
Spin Exchange of Nitroxide Free Radicals in Liquids: 6. Separating
Line Broadening due to Spin Exchange and Dipolar Interactions. J.
Phys. Chem. A 2009, 113, 4930−4940.
(19) O’Toole, T. R.; Younathan, J. N.; Sullivan, B. P.; Meyer, T. J.
1,2-Difluorobenzene: a relatively inert and noncoordinating solvent
for electrochemical studies on transition-metal complexes. Inorg.
Chem. 1989, 28, 3923−3926.
(20) (a) Values from Issacs, N. Physical Organic Chemistry, 2nd ed.;
Longman Scientific & Technical: London, U.K., 1995; pp 152−153,
which lists averaged values reported in Exner, O. in Correlation
Analysis in Chemistry, Chapman, N. B. and Shorter, J., Eds.; Longman
Scientific & Technical Plenum: London, U.K., 1978; Chapter 10. (b)
+
Slightly different values of σp = 0.82 (NMe3 ) and a significantly
−
different value of σp = 0.35 (SO3 ) Hansch, C.; Leo, A.; Taft, R. W.
Chem. Rev. 1991, 91, 165−195.
(21) As expected in the presence of excess Bu4NPF6 electrolyte, the
CV of 4b in DFB solvent exhibits an essentially identical E1/2 of
−0.140 V versus Fc+/Fc, albeit with reduced cathodic reversibility
(Figure S18). We speculate that the reduced cathodic reversibility is
due to reaction of the generated [CuOH]2+ core with C−H bonds in
the cryptand.
(22) Chang, K. B.; Vinokur, A.; Pinlac, R. A. F.; Suchomel, M. R.;
Marvel, M. R.; Poeppelmeier, K. R. How lewis acidity of the cationic
framework affects KNaNbOF5 polymorphism. Inorg. Chem. 2014, 53,
6979−6984.
(23) Attempted oxidation of 4b with [Fc][BArF ] at −25 °C
4
produced similar charge transfer features as 8a, but this species is
highly unstable and decays almost instantaneously. This is in
agreement with the reduced cathodic reversibility observed previously
in the cyclic voltammetry experiments.
(10) Boaz, N. C.; Bell, S. R.; Groves, J. T. Ferryl Protonation in
Oxoiron(IV) Porphyrins and Its Role in Oxygen Transfer. J. Am.
Chem. Soc. 2015, 137, 2875−2885.
(11) (a) Yoshida, M.; Kondo, M.; Torii, S.; Sakai, K.; Masaoka, S.
Oxygen Evolution Catalyzed by a Mononuclear Ruthenium Complex
(24) Connelly, N. G.; Geiger, W. E. Chemical Redox Agents for
Organometallic Chemistry. Chem. Rev. 1996, 96, 877−910.
(25) Warren, J. J.; Tronic, T. A.; Mayer, J. M. Thermochemistry of
Proton-Coupled Electron Transfer Reagents and its Implications.
Chem. Rev. 2010, 110, 6961−7001.
L
Inorg. Chem. XXXX, XXX, XXX−XXX