Full Paper
NMR (CDCl3): δ = 7.32 (dt, J1 = 5.2 Hz, J2 = 2.9 Hz, 1 H), 7.85 (m, 2
H, signals overlapping), 7.87 (s, 2 H), 7.93 (s, 1 H), 8.05 (s, 2 H), 8.27
(s, 2 H), 8.71 (d, J = 4.8 Hz, 1 H) ppm. 13C NMR (CDCl3): δ = 114.7,
119.8, 123.6, 126.4, 127.6, 136.1, 137.0, 146.7, 148.3, 150.2, 150.4,
151.6, 152.4, 158.9 ppm. MS (MALDI-TOF): m/z (%) = 358.28 [M +
MALDI-TOF/TOF, respectively. The University of Cyprus is
acknowledged for a New Faculty Startup Grant to S. N. G.
Keywords: G-Quadruplexes · DNA · N,O ligands · Nitrogen
heterocycles · C–H activation
H]+ (calcd. for C19H12N5O3: 358.09). UV (50 m
M Tris-HCl aqueous
buffer, pH 7.4): λmax = 326 nm.
5,5′-{4-[5-(Pyridin-2-yl)oxazol-2-yl]pyridine-2,6-diyl}bis[2-(pyr-
idin-2-yl)oxazole] (23): A round-bottomed flask was charged with
compound 22 (0.080 g, 0.22 mmol, 1 equiv.), 2-bromopyridine (8;
0.063 mL, 0.66 mmol, 3 equiv.), Cs2CO3 (0.316 g, 0.97 mmol,
4.4 equiv.), Pd(OAc)2 (0.020 g, 0.09 mmol, 0.4 equiv.), CuI (0.092 g,
0.48 mmol, 2.2 equiv.), and Cy3P·HBF4 (0.016 g, 0.045 mmol,
0.2 equiv.). The flask was fitted with a vertical condenser and was
set under an argon atmosphere. Anhydrous 1,4-dioxane (5 mL) was
added by syringe, and the mixture was heated at reflux at 130 °C
for 24 h, then cooled to room temperature, and filtered through a
sintered Büchner funnel to remove insoluble inorganic materials.
The dioxane solution was dried under reduced pressure, and the
crude residue was redissolved in a small amount of dichlorometh-
ane. It was applied to a silica gel column for flash chromatography
(CH2Cl2/MeOH, gradient from 98:2 to 90:10) to afford compound 23
(0.060 g, 0.12 mmol, 54 % yield) as a beige powder. 1H NMR (CDCl3):
δ = 7.33 (dd, J1 = 7.9 Hz, J2 = 4.9 Hz, 1 H), 7.45 (dd, J1 = 7.9 Hz, J2 =
4.9 Hz, 2 H), 7.85–7.93 (m, 3 H, signals overlapping), 7.95 (d, J =
6.5 Hz, 1 H), 7.96 (s, 1 H), 8.08 (s, 2 H), 8.30 (d, J = 7.9 Hz, 2 H), 8.49
(s, 2 H), 8.72 (d, J = 4.9 Hz, 1 H), 8.83 (d, J = 4.1 Hz, 2 H) ppm. 13C
NMR (CDCl3): δ = 115.1, 120.0, 122.7, 123.6, 125.1, 127.6, 128.8,
136.2, 137.0, 137.1, 145.8, 146.7, 148.3, 149.0, 150.2, 151.2, 152.5,
159.1, 161.2 ppm. MS (MALDI-TOF): m/z (%) = 512.41 [M + H]+
[1] a) C. Hyeon, D. Thirumalai, Nature Commun. 2011, 2, 487; b) P. C. Whit-
ford, K. Y. Sanbonmatsu, J. N. Onuchic, Rep. Prog. Phys. 2012, 75, 7; c) A.
Das, M. Gur, M. H. Cheng, S. Jo, I. Bahar, B. Roux, PLoS Comput. Biol. 2014,
10, e1003621.
[2] a) L. A. Howell, M. Searcey, ChemBioChem 2009, 10, 2139–2143; b) T.
Biver, Coord. Chem. Rev. 2013, 257, 2765–2783.
[3] a) M. L. Bochman, K. Paeschke, V. A. Zakian, Nat. Chem. Genet. 2012, 13,
770–780; b) H. J. Lipps, D. Rhodes, Trends Cell Biol. 2009, 19, 414–422; c)
G. W. Collie, G. N. Parkinson, Chem. Soc. Rev. 2011, 40, 5867–5892.
[4] a) N. Kumar, S. Maiti, Nucleic Acids Res. 2008, 36, 5610–5622; b) A. N.
Lane, J. B. Chaires, R. D. Gray, J. O. Trent, Nucleic Acids Res. 2008, 36,
5482–5515.
[5] a) J. L. Huppert, S. Balasubramanian, Nucleic Acids Res. 2005, 33, 2908–
2916; b) J. L. Huppert, S. Balasubramanian, Nucleic Acids Res. 2007, 35,
406–413; c) A. K. Todd, M. Johnston, S. Neidle, Nucleic Acids Res. 2005,
33, 2901–2907; d) A. K. Todd, Methods 2007, 43, 246–251.
[6] a) A. Siddiqui-Jain, C. L. Grant, D. J. Bearss, L. H. Hurley, Proc. Natl. Acad.
Sci. USA 2002, 99, 11593–11598; b) S. Rankin, A. P. Reszka, J. Huppert, M.
Zloh, G. N. Parkinson, A. K. Todd, S. Ladame, S. Balasubramanian, J. Am.
Chem. Soc. 2005, 127, 10584–10589; c) H. Fernando, A. P. Reszka, J. Hup-
pert, S. Ladame, S. Rankin, A. R. Venkitaraman, S. Neidle, S. Balasubrama-
nian, Biochemistry 2006, 45, 7854–7860; d) S. Cogoi, L. E. Xodo, Nucleic
Acids Res. 2006, 34, 2536–2549.
[7] S. Balasubramanian, L. H. Hurley, S. Neidle, Nat. Rev. Drug Discovery 2011,
10, 261–275.
[8] a) M. Tarsounas, M. Tijsterman, J. Mol. Biol. 2013, 425, 4782–4789; b) L.
Oganesian, J. Karlseder, J. Cell Sci. 2009, 122, 4013–4025; c) P. Murat, S.
Balasubramanian, Curr. Opin. Genet. Dev. 2014, 25, 22–29.
(calcd. for C29H18N7O3: 512.15). UV (50 mM Tris-HCl aqueous buffer,
pH 7.4): λmax = 307 nm.
CD Titrations: DNA (c-myc model promoter sequence: 5′-
TGAGGGTGGGTAGGGTGGGTAA-3′) was purchased from Microsynth
as a synthetic oligonucleotide and was purified by HPLC and dialy-
[9] V. S. Chambers, G. Marsico, J. M. Boutell, M. Di Antonio, G. P. Smith, S.
Balasubramanian, Nat. Biotechnol. 2015, 33, 877–881.
[10] C. K. Kwok, S. Balasubramanian, Angew. Chem. Int. Ed. 2015, 54, 6751–
6754; Angew. Chem. 2015, 127, 6855–6858.
sis. Stock solutions of 0.1 m
M
DNA were prepared in 50 mM Tris-HCl
[11] a) G. Biffi, D. Tannahill, J. McCafferty, S. Balasubramanian, Nat. Chem.
2013, 5, 182–186; b) G. Biffi, M. Di Antonio, D. Tannahill, S. Balasubrama-
nian, Nat. Chem. 2014, 6, 75–80; c) A. Henderson, Y. Wu, Y. C. Huang,
E. A. Chavez, J. Platt, F. B. Johnson, R. M. Brosh Jr., D. Sen, P. M. Lansdrop,
Nucleic Acids Res. 2014, 42, 860–869.
[12] a) A. Laguerre, K. Hukezalie, P. Winckler, F. Katranji, G. Chanteloup, M.
Pirrotta, J.-M. Perrier-Cornet, J. M. Y. Wong, D. Monchaud, J. Am. Chem.
Soc. 2014, 136, 12406–12414; b) A. Shivalingam, M. A. Izquierdo, A.
Le Marois, A. Vyšniauskas, K. Suhling, M. K. Kuimova, R. Vilar, Nat. Com-
mun. 2015, 6, 8178.
buffer (pH 7.4), with added NaCl or KCl at 100 m
M
concentration or
without any added salt. The DNA was annealed at 95 °C for 5 min
and then cooled down to room temperature slowly overnight. Ap-
propriate volumes of the aforementioned DNA solutions were
mixed with various volumes of 0.4 mM compound in DMSO solution
and with buffer (the same as that in which the DNA was dissolved)
for 5 min to afford mixtures of fixed total volume, with final DNA
concentration of 3 μM and final compound concentrations of 0, 3,
6, 9, 12, and 15 μ . CD spectra for each of the mixtures were ob-
M
[13] a) D. Monchaud, M.-P. Teulade-Fichou, Org. Biomol. Chem. 2008, 6, 627–
636; b) D. Monchaud, A. Granzhan, N. Saettel, A. Guédin, J.-L. Mergny,
M.-P. Teulade-Fichou, J. Nucleic Acids 2010, 525862; c) M. C. Nielsen, T.
Ulven, J. Med. Chem. 2010, 17, 3438–3448; d) S. N. Georgiades, N. H.
Abd Karim, K. Suntharalingam, R. Vilar, Angew. Chem. Int. Ed. 2010, 49,
4020–4034; Angew. Chem. 2010, 122, 4114–4128.
[14] D. Drygin, A. Siddiqui-Jain, S. O'Brien, M. Schwaebe, A. Lin, J. Bliesath,
C. B. Ho, C. Proffitt, K. Trent, J. P. Whitten, J. K. Lim, D. Von Hoff, K. An-
deres, W. G. Rice, Cancer Res. 2009, 69, 7653–7661.
[15] a) J. Seenisamy, E. M. Rezler, T. J. Powell, D. Tye, V. Gokhale, C. S. Joshi,
A. Siddiqui-Jain, L. H. Hurley, J. Am. Chem. Soc. 2004, 126, 8702–8709; b)
A. T. Phan, Y. S. Modi, D. J. Patel, J. Am. Chem. Soc. 2004, 126, 8710–8716;
c) W. Gai, Q.-F. Yang, J.-F. Xiang, H.-X. Sun, Q. Shang, Q. Li, W. Jiang, A.-J.
Guan, H. Zhang, Y.-L. Tang, G.-Z. Xu, Chin. Sci. Bull. 2013, 58, 731–740.
[16] N. Ranjan, K. F. Andreasen, S. Kumar, D. Hyde-Volpe, D. P. Arya, Biochemis-
try 2010, 49, 9891–9903.
[17] Q. Li, J. Xiang, X. Li, L. Chen, X. Xu, Y. Tang, Q. Zhou, L. Li, H. Zhang, H.
Sun, A. Guan, Q. Yang, S. Yang, G. Xu, Biochimie 2009, 91, 811–819.
[18] Q. Chen, I. D. Kuntz, R. H. Shafer, Proc. Natl. Acad. Sci. USA 1996, 93, 2635–
2639.
tained at 21 °C by using square quartz cell (1 cm path, 4 mL vol-
ume). The scan of the buffer was subtracted from the average scan
for each sample. The scans were recorded in the 200–500 nm range,
with the following parameters: standard sensitivity, 1 s D.I.T., 2 nm
bandwidth, 1 nm data pitch, 50 nm min–1 scanning speed, three
accumulations.
Supporting Information (see footnote on the first page of this
article): Experimental details, characterization data, and copies of
1
the H NMR and 13C NMR spectra of all key intermediates and final
products.
Acknowledgments
The authors thank Prof. Nikos Chronakis for access to the CD
and MS-MALDI-TOF/TOF instruments, Prof. Panayiotis Koutentis
for very helpful discussions, and Dr. Elena Loizou and Ms. Maria
Koyioni for assistance with the CD spectrometer and the MS-
Eur. J. Org. Chem. 2016, 122–131
130
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim