Chemistry - An Asian Journal
10.1002/asia.201700732
COMMUNICATION
a
0
Table 1. Optical and electrochemical data, calculated diradical character (y ) and measured singlet-triplet gap (ΔES-T) of the BBT derivatives.
ε
(M
cm )
max
-1
ox1
1/2
ox2
red1
1/2
red2
1/2
red3
1/2
red4
1/2
EC
opt
λ
max
E
E
1/2
E
E
E
E
HOMO
(eV)
LUMO
(eV)
E
g
E
g
ΔES-T
(kcal/mol)
Comp.
y
0
(nm)
-1
(eV)
(eV)
(eV)
(eV)
(eV)
(eV)
(eV)
(eV)
BBT-BP-1
BBT-BP-2
BBT-BP-3
BBT-TPA-1
BBT-TPA-2
BBT-TPA-3
a
572
700
587
754
892
754
14200
26900
25700
22300
41700
42800
0.92
0.82
0.99
0.24
0.18
0.13
1.23
1.00
-
0.90
0.98
0.79
-1.24
-0.88
-1.09
-1.08
-0.94
-1.20
-
-
-
-5.70
-5.64
-5.74
-4.98
-4.92
-4.83
-3.57
-4.08
-3.86
-3.78
-3.95
-3.69
1.95
1.56
1.88
1.20
0.97
1.14
1.90
1.57
1.83
1.36
1.11
1.38
0.026
0.304
0.081
0.050
0.355
0.114
-
-1.15
-1.27
-1.26
-1.17
-1.39
-1.83
-
-1.96
-1.80
-2.06
-2.01
-
-2.19
-2.05
-2.25
onset
-12.0
-
-
-3.20
-3.66
onset
onset
onset
HOMO and LUMO levels were esimated according to the equations: HOMO=-(4.8+Eox
) eV and LUMO=-(4.8+Ered
) eV, where Eox
and Ered
are the
+
Ec
g
opt
g
onset potential (vs Fc /Fc) of the first oxidative and reductive redox wave, respectively. E
is electrochemical energy gap calculated from LUMO-HOMO. E
is
optical energy gap derived from lowest energy absorption onset in the electronic absorption spectra.
-
1
-1
7
00 nm, εmax = 26900 M cm ) due to more extended π-
J. W. acknowledges financial support from the MOE Tier 3
programme (MOE2014-T3-1-004) and MOE Tier grant
(MOE2014-T2-1-080). We thank Dr. Tan Geok Kheng for her
help on X-ray crystallographic analysis.
2
conjugation. However, BBT-BP-3 just displays a slight red shift
(λmax = 587 nm, εmax = 25700 M cm ) due to its twisted structure.
-
1
-1
With the incorporation of electron-donating groups, the
absorption spectra of BBT-TPA-1, BBT-TPA-2 and BBT-TPA-3
are dramatically red shifted into the NIR region, with λmax
apearing at 754, 892 and 754 nm respectively, owing to
intramolecular charge transfer characcter. At the same time, the
intensity increases.
Cyclic voltammetry measurements were also performed for
the two series of BBT derivatives in anhydrous DCM and they all
showed amphoteric redox behavior (Figure 4b and Table 1). For
BBT-BP-1, two quasi-reversible oxidation waves and one
reversible reduction wave were observed. Passing to BBT-BP-2,
however, four reversible reduction waves were observed,
indicating strong electronic interactions between the BBT units.
The LUMO level is also dramtically decreased from -3.57 eV for
BBT-BP-1 to -4.08 eV for BBT-BP-2 while the HOMO is slightly
lifted up. For the twisted dimer BBT-BP-3, two reversible
reduction waves can be determined, implying a moderate
coupling between two BBT units, and the LUMO (-3.86 eV) lies
between those of BBT-BP-1 and BBT-BP-2. The TPA-
Keywords: diradicalod • benzobis(thiaziazole) • donor-acceptor
• near infrared dye • magnetic property
[1] (a) M. Abe, Chem. Rev. 2013, 113, 7011. (b) Z. Sun, Z. Zeng, J. Wu, Acc.
Chem. Res. 2014, 47, 2582. (c) M. Nakano, Excitation Energies and
Properties of Open-Shell Singlet Molecules; Springer: New York, 2014. (d)
Z. Zeng, X. Shi, C. Chi, J. T. López Navarrete, J. Casado, J. Wu, Chem.
Soc. Rev. 2015, 44, 6578. (e) T. Kubo, Chem. Lett. 2015, 44, 111.
[
2] (a) A. Konishi, Y. Hirao, M. Nakano, A. Shimizu, E. Botek, B. Champagne,
D. Shiomi, K. Sato, T. Takui, K. Matsumoto, H. Kurata, T. Kubo, J. Am.
Chem. Soc. 2010, 132, 11021. (b) Z. Sun, S. Lee, K. Park, X. Zhu, W.
Zhang, B. Zheng, P. Hu, Z. Zeng, S. Das, Y. Li, C. Chi, R. Li, K. Huang, J.
Ding, D. Kim, J. Wu, J. Am. Chem. Soc. 2013, 135, 18229. (c) A. Shimizu,
R. Kishi, M. Nakano, D. Shiomi, K. Sato, T. Takui, I. Hisaki, M. Miyata, Y.
Tobe, Angew. Chem. Int. Ed. 2013, 52, 6076. (d) G. E. Rudebusch, J. L.
Zafra, K. Jorner, K. Fukuda, J. L. Marshall, I. Arrechea-Marcos, G. L.
Espejo, R. Ponce Ortiz, C. J. Gomez-Garcia, L. N. Zakharov, M. Nakano,
[
substituted compounds BBT-TPA-1
– BBT-TPA-3 exhibit
significantly lowed first oxidation potentials correlated to the
oxidation of the TPA unit. Three (quasi)reversible reduction
waves are observed for BBT-TPA-1, and its LUMO level (-3.78
eV) is lower than that BBT-BP-1, presumably due to its larger
diradcial character. Compounds BBT-TPA-2 and BBT-TPA-3
show four and three reversible reduction waves, respectively,
and the LUMO level is slightly lifted up due to the electron-
[4] (a) R. Huang, H. Phan, T. S. Herng, P. Hu, W. Zeng, S. Dong, S. Das, Y.
Shen, J. Ding, D. Casanova and J. Wu, J. Am. Chem. Soc. 2016, 138,
10323. (b) W. Zeng, H. Phan, T. S. Herng, T. Y. Gopalakrishna, N. Aratani,
Z. Zeng, H. Yamada, J. Ding, J. Wu, Chem 2017, 2, 81.
[
5] (a) S. Nobusue, H. Miyoshi, A. Shimizu, I. Hisaki, K. Fukuda, M. Nakano, Y.
Tobe, Angew. Chem. Int. Ed. 2015, 54, 2090. (b) S. Das, T. S. Herng, J. L.
Zafra, P. M. Burrezo, M. Kitano, M. Ishida, T. Y. Gopalakrishna, P.Hu, A.
Osuka, J. Casado, J. Ding, D. Casanova, J. Wu, J. Am. Chem. Soc. 2016,
138, 7782. (c) X. Lu, S. Lee, J. O. Kim, T. Y. Gopalakrishna, H. Phan, T. S.
Herng, Z. L. Lim, Z. Zeng, J. Ding, D. Kim, J. Wu, J. Am. Chem. Soc. 2016,
donating effect of TPA. Due to the intramolecular charge transfer,
EC
the electrochemical energy gaps (E
g
) of BBT-TPA-1 – BBT-
138, 13049.
TPA-3 are significantly smaller than the corresponding
[
6] (a) T. Takahashi, K. Matsuoka, K. Takimiya, T. Otsubo, Y. Aso, J. Am.
Chem. Soc. 2005, 127, 8928. (b) R. P. Ortiz, J. Casado, V. Hernández, J.
T. L. Navarrete, P. M. Viruela, E. Ortí, K. Takimiya, T. Otsubo, Angew.
Chem. Int. Ed. 2007, 46, 9057.
compounds BBT-BP-1 – BBT-BP-3, in accordance with the
Opt
measured optical energy gaps (E
g
) (Table 1).
In summary, we have theoretically and experimentally
deomonstrated that BBT could be used as a useful building
block for construction of stable open-shell diradcialoids. It is
found that by increasing the π-conjugation length or introduction
of electron-donating groups to the termini, the diradical character
increases, leading to prominent paramagnetic acitivity and small
energy gap. The intensive NIR absorption of the TPA-substituted
[7] (a) Q. Wu, R. Li, W. Hong, H. Li, X. Gao, D. Zhu, Chem. Mater. 2011, 23,
3138. (b) X. Shi, E. Quintero, S. Lee, L. Jing, T. S. Herng, B. Zheng, K. W.
Huang, J. T. López Navarrete, J. Ding, D. Kim, J. Casado, C. Chi, Chem.
Sci. 2016, 7, 3036. (c) X. Shi, S. Lee, M. Son, B. Zheng, J. Chang, L. Jing,
K. W. Huang, D. Kim, C. Chi, Chem. Commun. 2015, 51, 13178. (d) S.
Dong, T. S. Herng, T. Y. Gopalakrishna, H. Phan, Z. L. Lim, P. Hu, R. D.
Webster, J. Ding C. Chi, Angew. Chem. Int. Ed. 2016, 55, 9316.
BBTs BBT-TPA-1
–
BBT-TPA-3 implies their potential
[8] (a) Y. Nakamura, N. Aratani, H. Shinokubo, A. Takagi, T. Kawai, T.
Matsumoto, Z. S. Yoon, D. Y. Kim, T. K. Ahn, D. Kim, A. Muranaka, N.
Kobayashi, A. Osuka, J. Am. Chem. Soc. 2006, 128, 4119. (b) S. Hiroto, N.
Aratani, N. Shibata, Y. Higuchi, T. Sasamori, N. Tokitoh, H. Shinokubo, A.
Osuka, Angew. Chem. Int. Ed. 2009, 48, 2388.
applications in bio-imaging. Our studies provided rational design
principle and synthetic strategy toward BBT-based diradicaloids
and NIR dyes.
[9] (a) K. Ono, S. Tanaka, Y. Yamashita, Angew. Chem. Int. Ed. 1994, 33,
1
977. (b) C. Kitamura, S. Tanaka, Y. Yamashita, Chem. Mater. 1996, 8,
Acknowledgements
570. (c) G. Qian, Z. Zhong, M. Luo, D. Yu, Z. Zhang, Z. Y. Wang, D. Ma,
Adv. Mater. 2009, 21, 111. (d) Y. Yang, R. T. Farley, T. T. Steckler, S.-H.
4
This article is protected by copyright. All rights reserved.