Please do not adjust margins
ChemComm
Page 4 of 5
DOI: 10.1039/C8CC00047F
COMMUNICATION
Journal Name
patterned images captured with excitation at: (I) 360 nm, (II) rationally designing high-quality SiNPs with unique optical
55 nm, and (III) 523 nm. (c) Rose- and bees-patterned images merits and understanding their luminescent mechanism,
4
composed from SiNP- and Rhodamine 6G (R6G)-solution facilitating the promotion of SiNPs-based widespread
captured with excitation at: (I) 455 nm, (II) 523 nm. Blue applications (e.g., laser, catalysis, solar cells, sensing and
emission window: 460-490 nm, exposure time: 800 ms; green bioimaging, etc.).
emission window: 490-520 nm, exposure time: 2000 ms; We express our thanks for the financial support provided by
yellow emission window: 540-590 nm, exposure time: 5000 ms. National Basic Research Program of China (973 Program
The thick white lines correspond to 1 cm.
2013CB934400), the National Natural Science Foundation of
China (21672157, 21542015, 21372174, 61361160412,
3
1400860, 21575096, and 21605109), the Ph.D. Programs
Foundation of the Ministry of Education of China
2013201130004), the Priority Academic Program
Development of Jiangsu Higher Education Institutions (PAPD),
11 Project, and the Collaborative Innovation Center of Suzhou
(
1
Nano Science and Technology (NANO–CIC).
Notes and references
1
(a) J. H. Park, L. Gu, G. v. Maltzahn, E. Ruoslahti, S. N. Bhatia,
M. J. Sailor, Nature Mater., 2009, , 331-336; (b) L. Gu, D. J.
Hall, Z. T. Qin, E. Anglin, J. Joo, D. J. Mooney, S. B. Howell, M.
J. Sailor, Nature Commun., 2013, , 2326; (c) J. W. Liu, F.
8
4
Erogbogbo, K. T. Yong, L. Ye, J. Liu, R. Hu, H. Y. Chen, Y. Z. Hu,
Y. Yang, J. H. Yang, I. Roy, N. A. Karker, M. T. Swihart, P. N.
Prasad, ACS Nano, 2013, 7, 7303-7310.
2
3
(a) F. Peng, Y. Y. Su, Y. L. Zhong, C. H. Fan, S. T. Lee, Y. He,
Acc. Chem. Res., 2014, 47, 612-623; (b) Y. Y. Su, X. Y. Ji, Y. He,
Adv. Mater., 2016, 28, 10567-10574.
(a) A. G. Cullis, L. T. Canham, Nature, 1991, 353, 335-338; (b)
B. F. P. McVey, R. D. Tilley, Acc. Chem. Res., 2014, 47, 3045-
Fig. 4 Confocal images of HeLa cells distributed with the IST-
SiNPs. (a) Bright-field image. Cell images under excitation at (b)
405 nm, emission band pass: 430-470 nm; (c) 458 nm,
emission band pass: 470-510 nm; (d) 514 nm, emission band
pass: 530-570 nm.
3
051; (c) X. Y. Cheng, S. B. Lowe, P. J. Reece, J. J. Gooding,
Chem. Soc. Rev., 2014, 43, 2680-2700; (d) M. Dasog, J.
Kehrle, B. Rieger, J. G. C. Veinot, Angew. Chem. Int. Ed.,
2
Pi, D. R. Yang, Adv. Mater., 2016, 28, 4912-4919.
(a) Q. Li, Y. He, J. Chang, L. Wang, H. Z. Chen, Y. W. Tan, H. Y.
Wang, Z. Z. Shao, J. Am. Chem. Soc., 2013, 135, 14924-14927;
(b) Q. Li, T. Y. Luo, M. Zhou, H. Abroshan, J. C. Huang, H. J.
016, 55, 2322-2339; (e) T. Yu, F. Wang, Y. Xu, L. L. Ma, X. D.
counterfeiting efficacy. In our case, rose and bees are coated
with IST-SiNPs and R6G, respectively. As shown in Fig. 3c, upon
excitation at 455 nm, only the rose printed by SiNP-ink appears
in the pattern, while bees printed by R6G-ink are invisible (Fig.
4
3
c (I)). When excited at 523 nm, yellow fluorescent signals
Kim, N. L. Rosi, Z. Z. Shao, R. C. Jin, ACS Nano, 2016, 10
385-8393; (c) Y. L. Zhong, B. Song, F. Peng, Y. Y. Wu, S. C.
Wu, Y. Y. Su, Y. He, Chem. Commun., 2016, 52, 13444-13447;
d) M. Dasog, Z. Y. Yang, S. Regli, T. M. Atkins, A. Faramus, M.
P. Singh, E. Muthuswamy, S. M. Kauzlarich, R. D. Tilley, J. G.
C. Veinot, ACS Nano, 2013, , 2676-2685; (e) G. De los Reyes,
M. Dasog, M. Na, L. Titova, J. G. C. Veinot, F. A. Hegmann,
Phys. Chem. Chem. Phys., 2015, 17, 30125-30133.
(a) M. Bandini, A. Eichholzer, Angew. Chem. Int. Ed., 2009,
,
8
from both SiNPs and R6G are readily observed in the whole
pattern (Fig. 3c (II)). In addition to anti-counterfeiting
applications, these ligand-modified fluorescent SiNPs also
show potential feasibility for bioimaging applications. As proof-
of-concept demonstration, the fixed Hela cells distributed with
SiNPs exhibit strong and resolved fluorescent signals. As shown
in Fig. 4, obvious blue, green, and yellow fluorescent images
are observed upon excitation at 405, 458, and 514 nm,
respectively.
(
7
5
6
4
8, 9608-9644; (b) Z. J. Cai, S. Y. Wang, S. J. Ji, Org. Lett.,
013, 15, 5226-5229; (c) Y. Zi, Z. J. Cai, S. Y. Wang, S. J. Ji,
2
Org. Lett., 2014, 16, 3094−3097.
(a) Y. L. Zhong, F. Peng, F. Bao, S. Y. Wang, X. Y. Ji, L. Yang, Y.
Y. Su, S. T. Lee, Y. He, J. Am. Chem. Soc., 2013, 135, 8350-
8
356; (b) Y. L. Zhong, X. T. Sun, S. Y. Wang, F. Peng, F. Bao, Y.
Y. Su, Y. Y. Li, S. T. Lee, Y. He, ACS Nano, 2015, , 5958-5967.
M. Li, S. K. Cushing, X. Zhou, S. Guo, N. Wu, J. Mater. Chem.,
012, 22, 23374–23379.
X. Wang, L. Cao, S. T. Yang, F. S. Lu, M. J. Meziani, L. L. Tian,
K. W. Sun, M. A. Bloodgood, Y. P. Ya, Angew. Chem. Int. Ed.,
Conclusions
9
In summary, we develop a kind of fluorescent SiNPs
featuring excitation-wavelength-dependent PL property, based
on introducing oxidized indole derivatives as surface ligands.
Taken together with the PL energy and TCSPC results, we
deduce the origin of the excitation-wavelength-dependent
fluorescent property is mainly attributed to the formation of
different CT states. We further exploit the resultant SiNPs as
novel fluorescent labels for anti-counterfeiting and bioimaging
applications. These results offer valuable information for
7
8
2
2
010, 49, 5310–5314.
9
J. Andres, R. D. Hersch, J. E. Moser, A. S. Chauvin, Adv. Funct.
Mater., 2014, 24, 5029-5036.
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins