J. Song et al. / Inorganica Chimica Acta 366 (2011) 134–140
139
Graduate Innovation and Creativity Funds (Grant No. 09YZZ48)
and the Open Foundation of Key Laboratory of Synthetic and Natural
Functional Molecule Chemistry of Ministry of Education.
Appendix A. Supplementary material
CCDC 747632(1) and 747633(2) contain the supplementary
crystallographic data for this paper. These data can be obtained
free of charge from The Cambridge Crystallographic Data Centre
associated with this article can be found, in the online version, at
References
[1] M.J. Hannon, C.L. Painting, E.A. Plummer, L.J. Childs, N.W. Alcock, Chem. Eur. J.
8 (2002) 2225.
[2] X.Z. Li, M. Li, Z. Li, J.Z. Hou, X.C. Huang, D. Li, Angew. Chem., Int. Ed. 47 (2008)
6371.
[3] R.H. Wang, Y.F. Zhou, Y.Q. Sun, D.Q. Yuan, L. Han, B.Y. Lou, B.L. Wu, M.C. Hong,
Cryst. Growth Des. 5 (2005) 251.
[4] S.G. Baca, I.L. Malaestean, T.D. Keene, H. Adams, M.D. Ward, J. Hauser, A. Neels,
S. Decurtins, Inorg. Chem. 47 (2008) 11108.
[5] S.F. Si, C.H. Li, R.J. Wang, Y.D. Li, J. Mol. Struct. 703 (2004) 11.
[6] X.M. Zhang, Coord. Chem. Rev. 249 (2005) 1201.
[7] X.F. Huang, Y.M. Song, Q. Wu, Q. Ye, X.B. Chen, R.G. Xiong, X.Z. You, Inorg.
Chem. Commun. 8 (2005) 58.
[8] W. Kaneko, M. Ohba, S. Kitagawa, J. Am. Chem. Soc. 129 (2007) 13706.
[9] F. Luo, Y.X. Che, J.M. Zheng, J. Mol. Struct. 827 (2007) 206.
[10] X.D. Zhu, J. Lu, X.J. Li, S.Y. Gao, G.L. Li, F.X. Xiao, R. Cao, Cryst. Growth Des. 8
(2008) 1897.
[11] L. Hou, Y.Y. Lin, X.M. Chen, Inorg. Chem. 47 (2008) 1346.
[12] L. Pan, D.H. Olson, L.R. Ciemnolonski, R. Heddy, J. Li, Angew. Chem., Int. Ed. 45
(2006) 616.
[13] X.M. Chen, M.L. Tong, Acc. Chem. Res. 40 (2007) 162.
[14] J. Lu, D.Q. Chu, J.H. Yu, X. Zhang, M.H. Bi, J.Q. Xu, X.Y. Yu, Q.F. Yang, Inorg. Chim.
Acta 359 (2006) 2495.
[15] B.C. Wang, Q.R. Wu, H.M. Hu, X.L. Chen, Z.H. Yang, Y.Q. Shangguan, M.L. Yang,
G.L. Xue, CrystEngComm 12 (2010) 485.
Fig. 4. The solid-state emission spectra of 2-pytpy and 1 (a), 4-pytpy and 2 (b) at
room temperature.
[16] M.H. Zeng, X.L. Feng, W.X. Zhang, X.M. Chen, Dalton Trans. (2006) 5294.
[17] E.C. Constable, E.L. Dunphy, C.E. Housecroft, W. Kylberg, M. Neuburger, S.
Schaffner, E.R. Schofield, C.B. Smith, Chem. Eur. J. 12 (2006) 4600.
[18] J.E. Beves, E.C. Constable, C.E. Housecroft, C.J. Kepert, D.J. Price, CrystEngComm
9 (2007) 456.
[19] N. Noshiranzadeh, A. Ramazani, A. Morsali, A.D. Hunter, M. Zeller, Inorg. Chim.
Acta 360 (2007) 3603.
[20] N. Masuhara, S. Hayami, N. Motokawa, A. Shuto, Y. Maeda, Chem. Lett. 36
(2007) 90.
for 1, calcd 61.18%; 4-pytpy for 2, calcd 48.05%). The weight loss of
19.48% from 452 °C to 655 °C for 1 and 21.95% from 412 °C to 700 °C
for 2 were attributed to the loss of the second ligands (fum2ꢁ ligands
for 1, calcd 19.31%; malate anions for 2, calcd 22.21%). The residue
product of 16.16% for 1 and 21.37% for 2 are ZnO (calcd 16.03% for
1 and 21.03% for 2). TGA results of these two coordination frame-
works indicate they possess great thermal stability, especially for
1, the framework is stable up to 380 °C. The purity of the complexes
1 and 2 is confirmed by powder X-ray diffraction (PXRD). As shown
in Fig. S2, the as-synthesized patterns of complexes 1 and 2 match
well with their corresponding simulated patterns from single-
crystal data.
[21] H. Feng, X.P. Zhou, T. Wu, D. Li, Y.G. Yin, S.W. Ng, Inorg. Chim. Acta 359 (2006)
4027.
[22] S.S. Zhang, S.Z. Zhan, M. Li, R. Peng, D. Li, Inorg. Chem. 46 (2007) 4365.
[23] L. Hou, D. Li, W.J. Shi, Y.G. Yin, S.W. Ng, Inorg. Chem. 44 (2005) 7825.
[24] J. Yoshida, S. Nishikiori, R. Kuroda, Chem. Lett. 36 (2007) 678.
[25] C. Liu, Y.B. Ding, X.H. Shi, D. Zhang, M.H. Hu, Y.G. Yin, D. Li, Cryst. Growth Des. 9
(2009) 1275.
[26] T. Furusawa, M. Kawano, M. Fujita, Angew Chem., Int. Ed. 46 (2007) 5717.
[27] B.Q. Ma, P. Coppens, Chem. Commun. (2003) 2290.
[28] F. Kröhnke, Synthesis (1976) 1.
[29] G.W. Cave, C.L. Raston, J. Chem. Soc., Perkin Trans. (2001) 3258.
[30] G.M. Sheldrick, SHELXS-97, Program for Crystal Structure Solution, University of
Göttingen, Göttingen, Germany, 1997.
4. Conclusion
[31] G.M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement, University
of Göttingen, Göttingen, Germany, 1997.
[32] P.M. Forster, A.R. Burbank, C. Livage, G. Férey, A.K. Cheetham, Chem. Commun.
(2004) 368.
[33] W.V. Sessions, J. Am. Chem. Soc. 50 (1928) 1696.
[34] M. Weiss, C.R. Downs, J. Am. Chem. Soc. 45 (1923) 1003.
[35] E. Dalcanale, F. Montanari, J. Org. Chem. 51 (1986) 567.
[36] C.D. Hurd, A.S. Roe, J.W. Williams, J. Org. Chem. 2 (1937) 314.
[37] J.M. Knaust, S.W. Keller, Inorg. Chem. 41 (2002) 5650.
[38] T. Wu, B.H. Yi, D. Li, Inorg. Chem. 44 (2005) 4130.
[39] B.C. Wang, X.L. Chen, H.M. Hu, H.L. Yao, G.L. Xue, Inorg. Chem. Commun. 12
(2009) 856.
In summary, two novel Zn(II) coordination polymers have been
in situ hydrothermally synthesized by the reaction of zinc chloride
with maleic acid and 40-(4-pyridyl)-terpyridine mixed ligands.
Interestingly, maleic acid is converted into fumaric and malic acid
by in situ reactions in 1 and 2, respectively. Complex 1 is a 1D infi-
nite chain structure, and complex 2 is a 3D network structure. The
luminescent properties of 1 and 2 have been investigated with
emission spectra and the solid-state UV–Vis diffuse reflectance
spectra in crystalline state. These complexes display excellent
luminescent properties and possess high thermal stability.
[40] B.S. Axelsson, K.J. Toole, P.A. Spencer, D.W. Young, J. Chem. Soc., Perkin Trans. I
(1994) 807.
[41] P.M. Jordan, J.B. Spencer, D.L. Corina, J. Chem. Soc., Chem. Commun. (1986)
911.
[42] M.X. Li, Z.X. Miao, M. Shao, S.W. Liang, S.R. Zhu, Inorg. Chem. 47 (2008) 4481.
[43] Y.Q. Sun, J. Zhang, Z.F. Ju, G.Y. Yang, Cryst. Growth Des. 5 (2005) 1939.
[44] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination
Compounds, fourth ed., John Wiley and Sons, New York, 1986.
Acknowledgements
This work was supported by the National Natural Science Foun-
dation of China (Grant Nos. 20573083 and 20873098), NWU