2
J . Org. Chem., Vol. 66, No. 1, 2001
Kitagawa et al.
tyrosine sulfation is suggested to be involved in many
biological functions of secretory proteins. Tyrosine O-
peptide chain was constructed using a nonsulfated Tyr
derivative as a building block, it must be sulfated later
without affecting the other susceptible residues (post-
assembly sulfation). This approach requires special man-
ipulations to achieve the selective sulfation of a Tyr
residue. The amino groups of the N-terminus and Lys
residues, the alcoholic hydroxyl groups of Ser and Thr
residues, and the phenolic hydroxyl groups of Tyr resi-
dues that do not need to be sulfated often require
3
sulfate [Tyr(SO H)] residues are also present in a few
4
biologically active peptides such as gastrin-II, cholecys-
tokinin (CCK),5 caerulein,6 leucosulfakinins, leech-
7
8
derived anticoagulant hirudin, and a higher plant-
derived growth factor phytosulfokines.9 The negative
3
charge of a Tyr(SO H) residue would be important not
only for peptide folding but also for specific ligand-
receptor interaction.3f
protection depending on the sulfating reagent used. The
11
A prerequisite for investigating the biological functions
of peptides and proteins is that efficient methods for
obtaining a large amount of them are available; however,
applied protecting groups, in addition, should be removed
without deteriorating the sulfated Tyr residue. For
example, Sakakibara and co-workers1 employed an acid-
stable and base-labile phenoxyacetyl group for protection
of the Ser residue in nonsulfated porcine CCK-33 and
selectively sulfated the Tyr residue using pyridinium
acetyl sulfate1 in TFA. During this reaction, the amino
groups did not need to be protected. In a synthesis of
0c
chemical synthesis of a Tyr(SO
still a great challenge. The major difficulty lies in the
intrinsic acid-lability of a Tyr(SO H) residue. Although
3
H)-containing peptide is
3
1d
many synthetic studies on sulfated peptides have been
reported,10 a general and facile synthetic strategy with
wide applicability has not been established yet. If a
1
0d
human CCK-33 reported by Yajima and co-workers,
a
sequential protection and deprotection procedure was
employed: (i) complete deprotection of nonsulfated hu-
man CCK-33 constructed by a solution-phase method, (ii)
reprotection of the free R- and ꢀ-amino groups with Fmoc
group, (iii) preferential masking of the alcoholic hydroxyl
groups with tert-butyldiphenylsilyl (TBDPS) group, (iv)
*
To whom correspondence should be addressed. Fax: 81-25-268-
1
230.
†
Niigata College of Pharmacy.
National Institute of Health Sciences.
Institute for Chemical Research, Kyoto University.
Faculty of Medicine, Kyoto University.
‡
§
|
(1) Abbreviations used are as follows: All amino acids are of the
L-configuration. AcOH, acetic acid; AcONH
4
, ammonium acetate; Boc,
tert-butoxycarbonyl; Bu, tert-butyl; CCK, cholecystokinin; Clt resin,
-chlorotrityl chloride resin; DIPCDI, N,N-diisopropylcarbodiimide;
sulfation of the Tyr residue using a pyridine-SO
3
t
11f
complex, and (v) simultaneous deprotection of the Fmoc
2
1
2
and the TBDPS protecting groups using tetra-n-butyl-
EDT, 1,2-ethanedithiol; Fmoc, fluoren-9-ylmethoxycarbonyl; FT-IR,
Fourier transform infrared spectrometry; HFIP, hexafluoro-2-propanol;
HOBt, 1-hydroxybenzotriazole; HOOBt, 3,4-dihydro-3-hydroxy-4-oxo-
ammonium fluoride. We have also reported an orthogonal
10g,i
procedure for the selective sulfation of a Tyr residue.
1
,2,3-benzotriazine; LSIMS, liquid secondary-ion mass spectrometry;
The alcoholic hydroxyl groups and amino groups on a
peptide chain were masked with safety-catch-type pro-
tecting groups, and the Tyr residue was selectively
MALDI-TOFMS, matrix-assisted laser desorption/ionization time-of-
flight mass spectrometry; NMM, N-methylmorpholine; PAL, 5-(4′-
aminomethyl-3′,5′-dimethoxyphenyl)valeryl; Pbf, 2,2,4,6,7-pentame-
thyldihydrobenzofuran-5-sulfonyl; Pfp, pentafluorophenyl; PyBOP,
benzotriazolyloxytris(pyrrolidino)phosphon-
sulfated using a DMF-SO
3
complex.13 Several sulfated
ium hexafluorophosphate; TFE, 2,2,2-trifluoroethanol.
peptides were prepared with the postassembly sulfation
method; however, this approach is generally time-
consuming and reduction of reactivity is anticipated in
the sulfation of a large peptide.
(2) Preliminary reports: (a) Kitagawa, K.; Aida, C.; Fujiwara, H.;
Yagami, T.; Futaki, S. Tetrahedron Lett. 1997, 38, 599-602. (b)
Kitagawa, K.; Aida, C.; Fujiwara, H.; Yagami, T.; Futaki, S. In
Peptides-Frontiers of Peptide Science (Proceedings of the 15th American
Peptide Symposium ); Tam, J . P., Kaumaya, P. T. P., Eds.; Kluwer/
Escom: Dordrecht, The Netherlands, 1999; pp 295-296. (c) Kitagawa,
K.; Aida, C.; Fujiwara, H.; Yagami, T.; Futaki, S.; Kogire, M.; Ida, J .;
Inoue. K. In Peptide Science-Present and Future (Proceedings of the
On the other hand, recent advances in the Fmoc-based
solid-phase peptide synthesis (Fmoc-SPPS)14 enabled us
1
st International Peptide Symposium); Shimonishi, Y., Ed.; Kluwer
Academic Publishers: Dordrecht, The Netherlands, 1999; pp 525-526.
3) General reviews on tyrosine sulfation in proteins: (a) Huttner,
(10) Solution-phase: (a) Moroder, L.; W u¨ nsch, E. In Natural Product
Chemistry; Attar-ur-Rahman Ed.; Springer-Verlag: Berlin, 1986; vol.
26, pp 255-280 and references cited therein. (b) Ondetti, M. A.;
Pluscec, J .; Sabo, E. F.; Sheehan, J . T.; Williams, N. J . Am. Chem.
Soc. 1970, 92, 195-199. (c) Kurano, Y.; Kimura, T.; Sakakibara, S. J .
Chem. Soc., Chem. Commun. 1987, 323-325. (d) Fujii, N.; Futaki, S.;
Funakoshi, S.; Akaji, K.; Morimoto, H.; Doi, R.; Inoue, K.; Kogire, M.;
Sumi, S.; Yun, M.; Tobe, T.; Aono, M.; Matsuda, M.; Narusawa, H.;
Moriga, M.; Yajima, H. Chem. Pharm. Bull. 1988, 36, 3281-3291.
Solid-phase: (e) Penke, B.; Rivier, J . J . Org. Chem. 1982, 52, 1197-
1200. (f) Penke, B.; Ngyerges, L. Pept. Res. 1991, 4, 289-295. (g)
Futaki, S.; Taike, T.; Akita, T.; Kitagawa, K. Tetrahedron 1992, 48,
8899-8914. (h) Yagami, T.; Shiwa, S.; Futaki, S.; Kitagawa, K. Chem.
Pharm. Bull. 1993, 41, 376-380. (i) Kitagawa, K.; Futaki, S.; Yagami,
T.; Sumi, S.; Inoue, K. Int. J . Pept. Protein Res. 1994, 43, 190-200. (j)
Han, Y.; Bontems, S. L.; Hegyes, P.; Munson, M. C.; Minor, C. A.;
Kates, S.; Albericio, F.; Barany, G. J . Org, Chem. 1996, 61, 6326-
6339.
(
W. B. Nature 1982, 299, 273-276. (b) Huttner, W. B. Methods Enzymol.
1
3
984, 107, 200-223. (c) Huttner, W. B. Annu. Rev. Physiol. 1988, 50,
63-376. (d) Huttner, W. B.; Baeuerle, P. A. In Modern Cell Biology;
Satir, B., Ed.; Alan R. Liss Inc.: New York, 1988; Vol. 6, pp 97- 140.
(
1
7
e) Niehrs, C.; Beiâwanger, R.; Huttner, W. B. Chem. Biol. Interact.
994, 92, 257-271. (f) Kehoe, J . W.; Bertozzi, C. R. Chem. Biol. 2000,
, R57-R61.
(4) (a) Gregory, H.; Hardy, P. M.; J ones, D. S.; Kenner, G. W.;
Sheppard, R. C. Nature 1964, 204, 931-933. (b) Bentley, P. H.; Kenner,
G. W.; Sheppard, R. C. Nature 1966, 209, 583-585.
(
5) (a) Mutt, V.; J orpes, J . E. Eur. J . Biochem. 1968, 6, 156-162.
(
b) Mutt, V.; J orpes, J . E. Biochem. J . 1971, 125, 57P-58P. (c) Rehfeld,
J . F. J . Biol. Chem. 1978, 253, 4022-4030. (d) Tatemoto, K.; J o¨ rnvall,
H.; Siimesmaa, S.; Halld e´ n, G.; Mutt, V. FEBS Lett. 1984, 174, 289-
2
93. (e) Reeve, J . R., J r.; Eysselein, V.; Walsh, J . H.; Ben-Avram, B.
M.; Shively, J . E. J . Biol. Chem. 1986, 261, 16392-16397. (f) Eysselein,
V. E.; Eberlein, G. A.; Schaeffer, M.; Grandtt, D.; Goebell, H.; Niebel,
W.; Rosenquist, G. L.; Meyer, H. E.; Reeve, J . R., J r. Am. J . Physiol.
(11) (a) Reitz, H. C.; Ferrel, R. E.; Frankel-Conrat, H.; Olcott, H. S.
J . Am. Chem. Soc. 1946, 68, 1024-1031. (b) Reitz, H. C.; Ferrel, R.
E.; Olcott, H. S.; Frankel-Conrat, H. J . Am. Chem. Soc. 1946, 68, 1031-
1035. (c) Gilbert, E. E. Chem. Rev. 1962, 62, 549-589. (d) Penke, B.;
Zar a´ ndi, M.; Kov a´ cs, K.; Rivier, J . In Peptides 1984 (Proceedings of
the 18th European Peptide Symposium); Ragnarsson, U. Ed.; Almqvist
and Wiksell, Int.: Stockholm, 1985; pp 279-283. (e) Borin, G.;
Calderan, A.; Ruzza, P.; Moroder, L.; Knaup, G.; G o¨ hring, W.; W u¨ nsch,
E. In Peptide Chemistry 1987; Shiba, T., Sakakibara, S., Eds.; Protein
Research Foundation: Osaka, 1988; pp 179-182. (f) Sisler, S. S.;
Audrieth, L. A. Inorg. Synth. 1946, 2, 173.
1
990, G253-G260.
6) Anastasi, A.; Erspamer, V.; Endean, R. Arch. Biochem. Biophys.
968, 125, 57-68.
7) (a) Nachman, R. J .; Holman, G. M.; Cook, B. J .; Haddon, W. F.;
(
1
(
Ling, N. Biochem. Biophys. Res. Commun. 1986, 140, 357-364. (b)
Nachman, R. J .; Holman, G. M.; Haddon, W. F.; Ling, N. Science 1986,
2
34, 71-73.
8) (a) Dodt, J .; Muller, H.-P.; Seemuller, U.; Chang, J . Y. FEBS
(
Lett. 1984, 165, 180-183. (b) Dodt, J .; Seemuller, U.; Maschler, R.;
(12) Ueki, M.; Amemiya, M. Tetrahedron Lett. 1987, 28, 6617-6620.
(13) Futaki, S.; Taike, T.; Yagami, T.; Ogawa, T.; Akita, T.; Kita-
gawa, K. J . Chem. Soc., Perkin Trans. 1 1990, 1739-1744.
(14) Atherton, E.; Sheppard, R. C. In Solid-Phase Peptide Synthe-
sis: A Practical Approach; Oxford University Press: Oxford, 1989.
Fritz, H. Biol. Chem. Hoppe-Seyler 1985, 336, 379-385.
(9) (a) Matsubayashi, Y.; Hanai, H.; Hara, O.; Sakagami, Y. Bio-
chem. Biophys. Res. Commun. 1996, 225, 209-214. (b) Matsubayashi,
Y.; Sakagami, Y. Proc. Natl. Acad. Sci., U.S.A. 1996, 93, 7623-7627.