Communication
NJC
M. Kar and J. M. Pringle, Fundamentals of Ionic Liquids:
From Chemistry to applications, Wiley, Weinheim, 2017;
(c) A. Mohammad and D. Inamuddin, Green Solvents II:
Properties and Applications of Ionic Liquids, Springer, New
York, 2012; (d) M. Freemantle, An Introduction to Ionic
Liquids, RSC Publishing, Cambridge, 2010.
2
(a) J. P. Hallett and T. Welton, Chem. Rev., 2011, 111, 3508;
(b) C. Hardacre and V. Parvulescu, Catalysis in Ionic Liquids:
From Catalyst Synthesis to Application, RSC Catalysis Series,
Cambridge, 2014.
Scheme 5 Synthesis of diepoxidized sulfonimidate salts 15a-b.
3
4
5
6
7
K. S. Schaffarczyk McHale, R. R. Hawker and J. B. Harper,
New J. Chem., 2016, 40, 7437.
A. Eftekhari, Ionic Liquid Devices, Royal Society of Chemistry,
degradation peak was observed at 100 1C with a maximum
degradation close to 410 1C for 15a and 400 1C for 15b.
Although the overall thermal stability of these new epoxidized
salts is low compared to the same diepoxidized imidazolium
2017.
P. Wasserscheid and T. Welton, Ionic Liquids in Synthesis,
Wiley-VCH, 2002.
D. Mecerreyes, Applications of Ionic Liquids in Polymer Science
and Technology, Springer, 2015.
(a) A. Eftekhari, Polymerized Ionic Liquids, Royal Society of
Chemistry, 2018; (b) A. Eftekhari and T. Saito, Eur. Polym. J.,
À
salt with NTf2 as a counteranion, the thermal behaviors of
15a-b are sufficient to envisage the preparation of new epoxy
networks with possible applications requiring high hydro-
phobicity (anti-corrosion coatings). The preparation of these
new cationic poly(ionic liquid)s from an epoxy monomer
incorporating a sulfonimide counterion is currently under
progress in our laboratory.
2
017, 90, 245.
(a) M. M. Obadia and E. Drockenmuller, Chem. Commun.,
016, 52, 2433; (b) W. Qian, J. Texter and F. Yan, Chem. Soc.
8
9
2
Rev., 2017, 46, 1124; (c) W. Ogihara, S. Washiro,
H. Nakajima and H. Ohno, Electrochim. Acta, 2006, 51, 2614.
(a) J. Yuan and M. Antonietti, Polymer, 2011, 52, 1469;
Conclusions
(b) S. Sowmiah, J. M. S. S. Esperança, L. P. N. Rebelo and
In this study, we prepared various sulfonimides and ketosulfo-
C. A. M. Afonso, Org. Chem. Front., 2018, 5, 453.
namides as counteranions to the imidazolium. These new salts 10 (a) D. Mecerreyes, Prog. Polym. Sci., 2011, 36, 1629;
were evaluated during an epoxidation reaction in order to
compare their chemical stability. The salts bearing ketosulfo-
namide anions were particularly sensitive to this reaction and
(b) P. Bonh oˆ te, A. P. Dias, N. Papageorgiou,
K. Kalyanasundaram and M. Gr ¨a tzel, Inorg. Chem., 1996,
35, 1168.
will not be suitable for further uses. Conversely, the salts 11 R. Marcilla, J. A. Blazquez, R. Fernandez, H. Grande,
bearing sulfonimides lead to epoxy salts with good to excellent
J. A. Pomposo and D. Mecerreyes, Macromol. Chem. Phys.,
thermal stability. Epoxidized salts represent a new family of
2005, 206, 299.
very exciting monomers. Henceforth, we will consider their use 12 Y. S. Vygodskii, O. A. Mel’nik, A. S. Shaplov, E. I. Lozinskaya,
in the polymerization processes and study their behavior. These
I. A. Malyshkina and N. D. Gavrilova, Polym. Sci., Ser. A,
original sulfonamide salts are still unexploited in this field and
2007, 49, 256.
represent a real opportunity for the preparation of tailor-made 13 (a) A. S. Shaplov, E. I. Lozinskaya, P. S. Vlasov,
PILs with novel properties.
S. M. Morozova, D. Y. Antonov, P.-H. Aubert, M. Armand
and Y. S. Vygodskii, Electrochim. Acta, 2015, 175, 254; (b)
H.-B. Han, Y.-X. Zhou, K. Liu, J. Nie, X.-J. Huang, M. Armand
and Z.-B. Zhou, Chem. Lett., 2010, 39, 472; (c) H. Matsumoto,
N. Terasawa, T. Umecky, S. Tsuzuki, H. Sakaebe, K. Asaka
and K. Tatsumi, Chem. Lett., 2008, 37, 1020; (d) M. Beran,
J. Pr ´ı hoda and J. Taraba, Polyhedron, 2010, 29, 991;
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
(
e) H. Zhang, X. Cheng, Q. Ma, W. Feng, L. Zheng, J. Nie,
X. Huang, M. Armand and Z. Zhou, Electrochim. Acta, 2016,
07, 66.
The Ministery of Higher Education and Research, the ‘‘Region
Basse Normandie’’, CNRS and FEDER are greatly acknowledged
for funding this work. We thank the LABEX SynOrg (ANR-11-
LABX-0029) and GDR LIPS-CNRS #5223 for financial support.
2
1
1
4 (a) T. Song, O. Morales-Collazo and J. F. Brennecke, J. Chem.
Eng. Data, 2019, 64, 4956; (b) H. Matsumoto, H. Kageyama
and Y. Miyazaki, Chem. Commun., 2002, 1726.
5 (a) T. Noguchi, C. Li, D. Sasaki, K. Yamada, K. Saigo and
Y. Ishida, Tetrahedron, 2016, 72, 1493; (b) Y. Ishida,
D. Sasaki, H. Miyauchi and K. Saigo, Tetrahedron Lett.,
2006, 47, 7973.
Notes and references
1
(a) M. B. Shiflett, Commercial Applications of Ionic Liquids,
Springer, Cham, Switzerland, 2020; (b) D. R. MacFarlane,
2956 | New J. Chem., 2021, 45, 2953À2957
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021