Communications
precursor solutions, and gelation was performed at room temperature
[14] C. R. Martin, Science 1994, 266, 1961; M. Steinhart, J. H.
Wendorff, A. Greiner, R. B. Wehrspohn, K. Nielsch, J. Schilling,
J. Choi, U. Gösele, Science 2002, 296, 1997; M. Zhang, P.
Dobriyal, J.-T. Chen, T. P. Russell, J. Olmo, A. Merry, Nano Lett.
2006, 6, 1075.
[15] M. Steinhart, S. Zimmermann, P. Göring, A. K. Schaper, U.
Gösele, C. Weder, J. H. Wendorff, Nano Lett. 2005, 5, 429.
[16] M. Steinhart, P. Göring, H. Dernaika, M. Prabhukaran, U.
Gösele, E. Hempel, T. Thurn-Albrecht, Phys. Rev. Lett. 2006, 97,
027801.
and at 1108C for 24 h each. The samples were heated to 5508C at a
rate of 1.0KminÀ1 and calcined at this temperature for 6 h. The silica
nanowires thus obtained were released by a wet-chemical etching step
with 10 wt% aqueous H3PO4 for 8 h. The resulting suspension was
washed with deionized water in five subsequent centrifugation steps.
For the ALD coating (Savannah 100 ALD reactor from Cambridge
Nanotech Inc.), the silica nanowires were placed on TEM grids coated
with holey carbon films and processed at 808C. The Ti(OiPr)4 was
heated to 608C during the process. The purging time was set to 120 s
to ensure complete removal of water adsorbed to the chamber walls.
Transmission electron microscopy was performed with a TEM
[17] K. Binder, J. Non-Equilib. Thermodyn. 1998, 23, 1; L. D. Gelb,
K. E. Gubbins, R. Radhakrishnan, M. Sliwinska-Bartkowiak,
Rep. Prog. Phys. 1999, 62, 1573.
JEOL 1010 apparatus and EDX measurements with
JEOL 2010.
a TEM
[18] Z. Yang, Z. Niu, X. Cao, Z. Yang, Y. Lu, Z. Hu, C. C. Han,
Angew. Chem. 2003, 115, 4867; Angew. Chem. Int. Ed. 2003, 42,
4201; Q. Lu, F. Gao, S. Komarneni, M. Chan, T. E. Mallouk, J.
Am. Chem. Soc. 2004, 126, 8650; B. Yao, D. Fleming, M. A.
Morris, S. E. Lawrence, Chem. Mater. 2004, 16, 4851; K. Jin, B.
Yao, N. Wang, Chem. Phys. Lett. 2005, 409, 172; W. Zhu, Y. Han,
L. An, Microporous Mesoporous Mater. 2005, 84, 69; G.
Kickelbick, Small 2005, 1, 168; X. Chen, M. Steinhart, C. Hess,
U. Gösele, Adv. Mater. 2006, 18, 2153.
[19] H. Q. Xiang, K. Shin, T. Kim, S. I. Moon, T. J. McCarthy, T. P.
Russell, Macromolecules 2004, 37, 5660; Y. Sun, M. Steinhart, D.
Zschech, R. Adhikari, G. H. Michler, U. Gösele, Macromol.
Rapid Commun. 2005, 26, 369.
[20] Y. Wu, G. Cheng, K. Katsov, S. W. Sides, J. Wang, J. Tang, G. H.
Fredrickson, M. Moskovits, G. D. Stucky, Nat. Mater. 2004, 3,
816.
[21] K. Shin, H. Q. Xiang, S. I. Moon, T. Kim, T. J. McCarthy, T. P.
Russell, Science 2004, 306, 76; B. Yu, P. Sun, T. Chen, Q. Jin, D.
Ding, B. Li, Phys. Rev. Lett. 2006, 96, 138306.
[22] M. Steinhart, C.-D. Liang, G. W. Lynn, U. Gösele, S. Dai, Chem.
Mater. 2007, 19, 2383.
[23] Z.-Y Tang, N. A. Kotov, Adv. Mater. 2005, 17, 951; M.-S. Hu, H.-
L. Chen, C.-H. Shen, L.-S. Hong, B.-R. Huang, K.-H. Chen, L.-C.
Chen, Nat. Mater. 2006, 5, 102.
[24] T. Suntola, J. Antson, US Patent 4 058 430, 1977.
[25] All molecular weights quoted are weight-average molecular
weights.
[26] E. Graugnard, J. S. King, D. P. Gaillot, C. J. Summers, Adv.
Funct. Mater. 2006, 16, 1187.
Received: March 1, 2007
Published online: August 2, 2007
Keywords: atomic layer deposition · block copolymers ·
.
materials science · nanostructures · self-assembly
[1] S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, R. Ryoo,
Nature 2001, 412, 169.
[2] H. Fan, K. Yang, D. M. Boye, T. Sigmon, K. J. Malloy, H. Xu,
G. P. Lopez, C. J. Brinker, Science 2004, 304, 567; Y. Kumai, H.
Tsukada, Y. Akimoto, N. Sugimoto, Y. Seno, A. Fukuoka, M.
Ichikawa, S. Inagaki, Adv. Mater. 2006, 18, 760.
[3] A. Yamaguchi, F. Uejo, T. Yoda, T. Uchida, Y. Tanamura, T.
Yamashita, N. Teramae, Nat. Mater. 2004, 3, 337.
[4] J. Kirstein, B. Platschek, C. Jung, R. Brown, T. Bein, C. Bräuchle,
Nat. Mater. 2007, 6, 303; J. Hohlbein, M. Steinhart, C. Schiene-
Fischer, A. Benda, M. Hof, C. G. Hübner, Small 2007, 3, 380.
[5] M. Beiner, G. T. Rengarajan, S. Pankaj, D. Enke, M. Steinhart,
Nano Lett. 2007, 7, 1381.
[6] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S.
Beck, Nature 1992, 359, 710; G. S. Attard, J. C. Clyde, C. G.
Göltner, Nature 1995, 378, 366.
[7] Y. F. Lu, R. Ganguli, C. A. Drewien, M. T. Anderson, C. J.
Brinker, W. L. Gong, Y. X. Guo, H. Soyez, B. Dunn, M. H.
Huang, J. I. Zink, Nature 1997, 389, 364.
[8] M. Templin, A. Franck, A. Du Chesne, H. Leist, Y. Zhang, R.
Ulrich, V. Schädler, U. Wiesner, Science 1997, 278, 1795.
[9] D. Y. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F.
Chmelka, G. D. Stucky, Science 1998, 279, 548; D. Y. Zhao, Q. S.
Huo, J. L. Feng, B. F. Chmelka, G. D. Stucky, J. Am. Chem. Soc.
1998, 120, 6024.
[10] K. Yu, A. J. Hurd, A. Eisenberg, C. J. Brinker, Langmuir 2001,
17, 7961.
[11] M. Groenewolt, T. Brezesinski, H. Schlaad, M. Antonietti, P. W.
Groh, B. Ivꢀn, Adv. Mater. 2005, 17, 1158.
[27] H. J. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, M.
Zacharias, U. Gösele, Nat. Mater. 2006, 5, 627; H. J. Fan, M.
Knez, R. Scholz, D. Hesse, K. Nielsch, M. Zacharias, U. Gösele,
Nano Lett. 2007, 7, 993; D. Wang, Y. L. Chang, Q. Wang, J. Cao,
D. B. Farmer, R. G. Gordon, H. Dai, J. Am. Chem. Soc. 2004,
126, 11602; M. Kang, J.-S. Lee, S.-K. Sim, B. Min, K. Cho, H.
Kim, M.-Y. Sung, S. Kim, S. A. Song, M.-S. Lee, Thin Solid Films
2004, 466, 265.
[28] M. Knez, A. Kadri, C. Wege, U. Gösele, H. Jeske, K. Nielsch,
Nano Lett. 2006, 6, 1172.
[29] M. Ritala, M. Leskelä, L. Niinistö, P. Haussalo, Chem. Mater.
1993, 5, 1174.
[12] Y. H. Deng, T. Yu, Y. Wan, Y. F. Shi, Y. Meng, D. Gu, L. J.
Zhang, Y. Huang, C. Liu, X. J. Wu, D. Y. Zhao, J. Am. Chem.
Soc. 2007, 129, 1690.
[13] H. Masuda, F. Fukuda, Science 1995, 268, 1466; H. Masuda, F.
Hasegawa, S. Ono, J. Electrochem. Soc. 1997, 144, L127.
6832
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2007, 46, 6829 –6832