H. Xu et al. / Journal of Alloys and Compounds 481 (2009) L4–L7
L7
experiment did not destroy the structure of MWNTs. The result con-
Acknowledgments
firms the previously deduction of nonlinear absorption mechanism,
because nonlinear scattering in the suspension will lead to sublima-
tion of carbon nanotubes. The nondestructive nonlinear absorption
mechanism of the MWNTs/SiO2 bulk material makes it recyclable,
and this turns out to be an advantage for practical use.
The authors are grateful for the financial supports from the
National Natural Science Foundation of China (No. 50702067) and
the Major Basic Research Programs of Shanghai (No. 07DJ14002).
As an optical limiter, the material should have not only optical
limiting properties and high linear transmittance, but also envi-
ronmental stability, especially under severe conditions. When the
laser beam is induced, energy absorbed by CNT will transform into
heat energy, leading to a high temperature in the matrix. The CNT
suspension is not stable, and polymer matrix cannot withstand the
high temperature of the incident laser. Silica is a ceramic mate-
rial, with good room and high temperature mechanical strength
and resistance to creep, excessive hardness and anti-abrasion prop-
erties, high resistance to oxidation and chemical attack, etc. All
of these factors make it suitable as the matrix for optical limiter.
Therefore, MWNT/SiO2 bulk materials prepared by hot-pressed sin-
tering might be a competitive candidate for practical use of optical
limiting.
References
[1] M.P. Joshi, S.R. Mishra, H.S. Rawat, S.C. Mehendale, K.C. Rustagi, Appl. Phys. Lett.
62 (15) (1993) 1763–1765.
[2] M. Meneghetti, R. Signorini, S. Sartori, R. Bozio, M. Maggini, G. Scorrano, M.
Prato, G. Brusatin, M. Guglielmi, Synth. Met. 103 (1999) 2474–2475.
[3] J. Lang, Z. Sun, Q. Xu, H. Yu, K. Tatsumi, Mater. Chem. Phys. 82 (2003) 493–498.
[4] M. Garcia, P. Florindo, M. Piedade, M. Duarte, M. Robalo, J. Heck, C. Wittenburg,
J. Holtmann, E. Licandro, J. Organomet. Chem. 693 (2008) 2987–2999.
[5] K.M. Nashold, D.P. Walter, J. Opt. Soc. Am. B 12 (1995) 1228–1237.
[6] R. Goedert, R. Becker, A. Clements, T. Whittaker III, J. Opt. Soc. Am. B 15 (1998)
1442–1462.
[7] K. Mohan Kumar, V. Kripesh, Andrew A.O. Tay, J. Alloy Compd. 450 (2008)
229–237.
[8] J.P. Cheng, X.B. Zhang, G.F. Yi, Y. Ye, M.S. Xia, J. Alloy Compd. 455 (2008) 5–9.
[9] R.H. Xie, J. Jiang, Appl. Phys. Lett. 71 (1997) 1029–1031.
[10] L. Vivien, E. Anglaret, D. Riehl, F. Bacou, C. Jurnet, C. Goze, M. Andrieux, M.
Brunet, F. Lafonta, P. Bernier, F. Hache, Chem. Phys. Lett. 307 (1999) 317–319.
[11] X. Sun, R.Q. Yu, G.Q. Xu, T.S.A. Hor, W. Ji, Appl. Phys. Lett. 73 (1998)
3632–3634.
4. Conclusions
[12] L. Liu, S. Zhang, T. Hu, Z. Guo, C. Ye, L. Dai, D. Zhu, Chem. Phys. Lett. 359 (2002)
191–195.
MWNT/SiO2 bulk materials were prepared by hot-pressing
method and its optical limiting properties were investigated. The
transmittance of the composite reached 70% in the visible light
region and about 76% near 1100 nm, which met the requirements
of an ideal optical limiter (>70%). In the z-scan experiments, the
composite showed optical limiting properties in different incident
intensity, and the main mechanism was deduced to be nonlinear
absorption. TEM proved that the hot-pressed sintering and the laser
beam irradiation did not destroy the MWNTs in the matrix. The non-
destructive nonlinear absorption mechanism of the MWNTs/SiO2
bulk material makes it recyclable, and this turns out to be an
advantage for practical use. Further work will be focused on the
improvement of MWNT dispersion and the resultant optical limit-
ing properties of the composites.
[13] H. Wu, R. Tong, X. Qiu, H. Yang, Y. Lin, R. Cai, S. Qian, Carbon 45 (2007) 152–159.
[14] Q. Wang, Y. Qin, Y. Zhu, X. Huang, Y. Tian, P. Zhang, Z. Guo, Y. Wang, Chem. Phys.
Lett. 457 (2008) 159–162.
[15] H. Zhan, W. Chen, M. Wang, C. Zheng, C. Zou, Chem. Phys. Lett. 382 (2003)
313–317.
[16] H. Zhan, C. Zheng, W. Chen, M. Wang, Chem. Phys. Lett. 411 (2005) 373–377.
[17] J. Ning, J. Zhang, Y. Pan, J. Guo, J. Mater. Sci. Lett. 22 (2003) 1019–1021.
[18] J. Ning, J. Zhang, Y. Pan, J. Guo, Ceram. Int. 30 (2004) 63–67.
[19] C. Xiang, Y. Pan, X. Liu, X. Sun, X. Shi, J. Guo, Appl. Phys. Lett. 87 (2005) 123103.
[20] Y. Zhu, Y. Pan, H. Xu, C. Xiang, Chem. Lett. 36 (2007) 1098–1099.
[21] M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland, IEEE J. Quant.
Elect. 26 (1990) 760–769.
[22] M. Sheik-Bahae, A. Said, E. Van Stryland, Opt. Lett. 14 (17) (1989) 955–957.
[23] L. Vivien, P. Lancon, D. Riehl, F. Hache, E. Anglaret, Carbon 40 (2002)
1789–1797.
[24] L. Wang, B. Tsai, Mater. Lett. 43 (2000) 309–314.
[25] P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, K.L. Tan, Phys. Rev. Lett. 82 (1999) 2548–2551.