[
J. Zhang et al. / Materials Research Bulletin 45 (2010) 1954–1959
1959
Fig. 7. (a) CD spectra and (b) CD melting curves of G2T4G4 in 40% (v/v) ethanol solutions (100 mM Na+, pH 5.9) before and after mixing with APTMS ethanol solution at 20 8C. (c)
AFM images of G2T4G4-silica nanostructures formed at the ethanol content of 40% (100 mM Na+, pH 5.9).
[5] Y. Lu, J.W. Liu, Acc. Chem. Res. 40 (2007) 315–323.
[6] J. Sharma, R. Chhabra, A. Cheng, J. Brownell, Y. Liu, H. Yan, Science 323 (2009) 112–
stranded supermolecular indeed induce the silica nanoparticles
assembly.
116.
[7] C.Y. Jin, H.B. Qiu, L. Han, M.H. Shu, S.A. Che, Chem. Commun. (23) (2009) 3407–
3409.
4. Conclusions
[8] M. Numata, K. Sugiyasu, T. Hasegawa, S. Shinkai, Angew. Chem. Int. Ed. 43 (2004)
3279–3283.
We have demonstrated
a novel approach to orient the
[9] S. Fujikawa, R. Takaki, T. Kunitake, Langmuir 21 (2005) 8899–8904.
[10] J.M. Kinsella, A. Ivanisevic, Langmuir 23 (2007) 3886–3890.
[11] K. Lund, Y. Liu, S. Lindsay, H. Yan, J. Am. Chem. Soc. 127 (2005) 17606–17607.
[12] C. Sanchez, H. Arribart, M.M.G. Guille, Nat. Mater. 4 (2005) 277–288.
[13] S. Burge, G.N. Parkinson, P. Hazel, A.K. Todd, S. Neidle, Nucleic Acids Res. 34 (2006)
5402–5415.
[14] Y. Qin, L.H. Hurley, Biochimie 90 (2008) 1149–1171.
[15] N. Sugimoto, Bull. Chem. Soc. Jpn. 82 (2009) 1–10.
[16] T.C. Marsh, E. Henderson, Biochemistry 33 (1994) 10718–10724.
[17] T.C. Marsh, J. Vesenka, E. Henderson, Nucleic Acids Res. 23 (1995) 696–700.
[18] D. Miyoshi, H. Karimata, Z.M. Wang, K. Koumoto, N. Sugimoto, J. Am. Chem. Soc.
129 (2007) 5919–5925.
organization of silica nanoparticles with leaf-vein branched
nanostructures by using an original dynamic G-quadruplex
transformation. Integrating the supermolecular assembly of DNA
biomolecules with the hydrolysis process of organosilane, the
branched silica nanostructures can be tuned through the cation
species and the ethanol content. For the development of ‘‘bottom-
up’’ nanobiotechnology, this original G-quadruplex transformation
is a promising approach to generate programmable templates that
can control the construction of regular branched nanostructures.
Our work shows the capability for directing oxide nanoparticles
into sophisticated nanoarchitectures, and this opens new avenues
to construct regular branched nanostructures of semiconductor
metal oxide nanoparticles for energy and catalysis applications.
[19] M.A. Batalia, E. Protozanova, R.B. Macgregor, D.A. Erie, Nano Lett. 2 (2002) 269–
274.
[20] E. Protozanova, R.B. Macgregor, Biochemistry 35 (1996) 16638–16645.
[21] M. Biyani, K. Nishigaki, Gene 364 (2005) 130–138.
[22] P.C. Lee, D. Meisel, J. Phys. Chem. 86 (1982) 3391–3395.
[23] P. Schultze, F.W. Smith, J. Feigon, Structure 2 (1994) 221–233.
[24] M. Crnugelj, P. Sket, J. Plavec, J. Am. Chem. Soc. 125 (2003) 7866–7871.
[25] P. Sket, M. Crnugelj, J. Plavec, Bioorg. Med. Chem. 12 (2004) 5735–5744.
[26] W. Li, P. Wu, T. Ohmichi, N. Sugimoto, FEBS Lett. 526 (2002) 77–81.
[27] M. Vorlickova, K. Bednarova, I. Kejnovska, J. Kypr, Biopolymers 86 (2007)
1–10.
[28] I.V. Smirnov, R.H. Shafer, Biopolymers 85 (2007) 91–101.
[29] Y.G. Lee, J.H. Park, C. Oh, S.G. Oh, Y.C. Kim, Langmuir 23 (2007) 10875–10878.
[30] D. Zhang, Y. Chen, H.Y. Chen, X.H. Xia, Anal. Bioanal. Chem. 379 (2004) 1025–
1030.
Acknowledgements
This work was supported by the NSFC (nos. 20776102 and
20836005), the RFDP and the NCET.
Appendix A. Supplementary data
[31] L. Laporte, G.J. Thomas, J. Mol. Biol. 281 (1998) 261–270.
[32] C. Krafft, J.M. Benevides, G.J. Thomas, Nucleic Acids Res. 30 (2002) 3981–3991.
[33] T. Miura, G.J. Thomas, Biochemistry 34 (1995) 9645–9654.
[34] W. Li, D. Miyoshi, S. Nakano, N. Sugimoto, Biochemistry 42 (2003) 11736–11744.
[35] Y. Zhou, S.H. Yu, C.Y. Wang, X.G. Li, Y.R. Zhu, Z.Y. Chen, Adv. Mater. 11 (1999) 850–
852.
Supplementary data associated with this article can be found, in
[36] L.B. Yang, B. Sun, F.L. Meng, M.Y. Zhang, X. Chen, M.Q. Li, J.H. Liu, Mater. Res. Bull.
44 (2009) 1270–1274.
References
[37] H.Y. Gan, Y.L. Li, H.B. Liu, S. Wang, C.H. Li, M.J. Yuan, X.F. Liu, C.R. Wang, L. Jiang,
D.B. Zhu, Biomacromolecules 8 (2007) 1723–1729.
[38] M. Koepf, J.A. Wytko, J.P. Bucher, J. Weiss, J. Am. Chem. Soc. 130 (2008) 9994–
10001.
[39] J. Vesenka, D. Bagg, A. Wolff, A. Reichert, R. Moeller, W. Fritzsche, Colloids Surf. B
58 (2007) 256–263.
[1] F.A. Aldaye, A.L. Palmer, H.F. Sleiman, Science 321 (2008) 1795–1799.
[2] L. Berti, G.A. Burley, Nat. Nanotechnol. 3 (2008) 81–87.
[3] Q. Gu, C.D. Cheng, R. Gonela, S. Suryanarayanan, S. Anabathula, K. Dai, D.T. Haynie,
Nanotechnology 17 (2006) 14–25.
[4] A. Houlton, A.R. Pike, M.A. Galindo, B.R. Horrocks, Chem. Commun. (14) (2009)
1797–1806.