the basis of comparison with their spectroscopic data with the
Soc. Jpn., 1966, 39, 128–131; (c) B. R. Patil, S. R. Bhusare, R. P. Pawar
and Y. Vibhute, Tetrahedron Lett., 2005, 46, 7179–7181; (d) G. A. Olah,
Q. Wang, G. Sandford and G. K. S. Prakash, J. Org. Chem., 1993,
4f ,11a,17,18
literature.
Conversions and yields of iodinated products
obtained are listed in Tables 1–5.
5
8, 3194–3195; (e) A. Bachki, F. Foubelo and M. Yus, Tetrahedron,
994, 50, 5139–5146; (f) K. Orito, T. Hatakeyama, M. Takeo and H.
1
Iodination of 1,3,5-trimethoxy benzene (7c). No solvent was
used during performance of the reaction and product isolation
in the case of iodination of 1,3,5-trimethoxy benzene (7c) using
UHP as mediator of oxidation. Prior to the reaction performance,
substrate 7c, iodine and UHP were separately finely triturated in a
mortar, after which each was transferred to a 5-mL round-bottom
flask, where the reaction was performed. To the finely powdered
substrate 7c (168 mg, 1 mmol), finely powdered iodine (127 mg,
Suginome, Synthesis, 1995, 1273–1277; (g) B. Krassowska-Swiebocka,
P. Luli n´ ski and L. Skulski, Synthesis, 1995, 926–928.
5 (a) Green Chemistry, Frontiers in Benign Chemical Syntheses and
Processes, ed. P. T. Anastas and T. C. Williamson, Oxford University
Press, New York, 1998; (b) P. T. Anastas and J. C. Warner, Green
Chemistry: Theory and Practice, Oxford University Press, New York,
1
998; (c) S. K. Ritter, Chem. Eng. News, 2001, 79(29), 27–34; (d) P. T.
Anastas and M. M. Kirchhoff, Acc. Chem. Res., 2002, 35, 686–694;
e) R. A. Sheldon, Green Chem., 2005, 7, 267–278.
(
6
7
(a) Solvent-free Organic Synthesis, ed. K. Tanaka, Wiley-VCH, Wein-
heim, 2003; (b) K. Tanaka and F. Toda, Chem. Rev., 2000, 100, 1025–
1074; (c) J. O. Metzger, Angew. Chem., Int. Ed., 1998, 37, 2975–2978.
(a) A. R. Hajipour and A. E. Ruoho, Org. Prep. Proced. Int., 2002, 34,
0
.5 mmol) was first added. Vigorous shaking was followed by the
addition of UHP (56.4 mg, 0.6 mmol), and more strong shaking
◦
of the reaction mixture ensued. After 5 hours reaction at 45 C,
6
47–651; (b) A. R. Hajipour, M. Arbabian and A. E. Ruoho, J. Org.
an aqueous solution of Na
2
S
2
3
O (10%, 30 mL) was poured into
Chem., 2002, 67, 8622–8624; (c) J. C. Lee and Y. H. Bae, SYNLETT,
the reaction mixture and the solution obtained was vigorously
stirred for an hour at room temperature. Following filtration
under reduced pressure, only 2-iodo-1,3,5-trimethoxy benzene (8c,
2
003, 507–508; (d) V. M. Alexander, A. C. Khandekar and S. D. Samant,
SYNLETT, 2003, 1895–1897.
8
9
(a) R. Noyori, M. Aoki and K. Sato, Chem. Commun., 2003, 1977–1986;
(
b) C. W. Jones, Applications of Hydrogen Peroxide and Derivatives,
2
63 mg, 0.89 mmol) was present in the isolated mixture.
Royal Society of Chemistry, Cambridge, 1999; (c) Peroxide Chemistry:
Mechanistic and Preparative Aspects of Oxygen Transfer, ed. W. Adams,
Wiley-VCH, Weinheim, 2000.
(a) C.-S. Lu, E. W. Hughes and P. A. Gigu e` re, J. Am. Chem. Soc.,
1941, 63, 1507–1513; (b) S. Taliansky, SYNLETT, 2005, 1962–1963;
Addition of iodine to 1-octene (13a), phenylacetylene (15a) and 1-
phenyl-1-propyne (15b). Iodine was finely powdered in a mortar,
after which 254 mg (1 mmol) was transferred to a 5-mL round-
bottom flask containing the liquid substrate (1 mmol). The mixture
was strongly shaken and left to react at room temperature. After
(
c) J. Muzart, Synthesis, 1995, 1325–1347; (d) A. McKillop and W. R.
Sanderson, Tetrahedron, 1995, 51, 6145–6166.
1
1
0 (a) P. Lulinski, A. Kryska, M. Sosnowski and L. Skulski, Synthesis,
2004, 441–445; (b) A. Zielinska and L. Skulski, Molecules, 2005, 10,
1307–1317; (c) M. Sosnowski and L. Skulski, Molecules, 2005, 7, 867–
5
–6 hours products were extracted with t-BuOMe (20 mL). The
organic phase was washed with an aqueous solution of Na
10%, 20 mL), H O (20 mL), dried over anhydrous Na SO and
2
S
2
O
3
8
70.
1 (a) J. Iskra, S. Stavber and M. Zupan, Synthesis, 2004, 1869–1873;
b) M. Jereb, M. Zupan and S. Stavber, Chem. Commun., 2004, 2614–
2615; (c) G. Stavber, M. Zupan, M. Jereb and S. Stavber, Org. Lett.,
004, 6, 4973–4976; (d) M. Jereb, J. Iskra, M. Zupan and S. Stavber,
(
2
2
4
concentrated in vacuo. The crude reaction mixtures were analysed
(
1
by TLC, H NMR and mass spectroscopy and products identified
2
on the basis of comparison of their spectroscopic data with
19,20
Lett. Org. Chem., 2005, 2, 465–468; (e) M. Jereb, M. Zupan and S.
Stavber, Green Chem., 2005, 7, 100–104; (f) A. Podgor sˇ ek, S. Stavber,
M. Zupan and J. Iskra, Tetrahedron Lett., 2006, 47, 1097–1099; (g) A.
Podgor sˇ ek, S. Stavber, M. Zupan and J. Iskra, Eur. J. Org. Chem., 2006,
the literature.
Yields of the iodinated products obtained are
depicted in Scheme 4.
4
7
2
83–488; (h) J. Pavlinac, M. Zupan and S. Stavber, J. Org. Chem., 2006,
1, 1027–1032; (i) J. Pavlinac, M. Zupan and S. Stavber, Synthesis,
006, 2603–2607; (j) A. Podgor sˇ ek, S. Stavber, M. Zupan and J. Iskra,
Acknowledgements
The authors are grateful to the staff of the Slovenian NMR Centre
at the National Institute of Chemistry in Ljubljana for assistance
in recording NMR specta, to Dr B. Kralj and Dr D. Zigon for
MS spectra and to the Slovenian Research Agency for financial
support.
Tetrahedron Lett., 2006, 47, 7245–7247; (k) I. Pravst, M. Zupan and S.
Stavber, Tetrahedron Lett., 2006, 47, 4707–4710; (l) I. Pravst, M. Zupan
and S. Stavber, Green Chem., 2006, 8, 1001–1005.
ˇ
1
1
2 S. Stavber, M. Jereb and M. Zupan, Chem. Commun., 2002, 488–489.
3 M. L. N. Rao and D. N. Jadhav, Tetrahedron Lett., 2006, 47, 6883–6886.
14 I. Pravst, M. Pape zˇ Iskra, M. Jereb, M. Zupan and S. Stavber,
Tetrahedron, 2006, 62, 4474–4481; and references cited therein.
1
5 (a) M. Bietti and A. Capone, J. Org. Chem., 2004, 69, 482–486; (b) M.
Jonsson, J. Lind, T. Reitberger and T. E. Eriksen, J. Phys. Chem., 1993,
References
9
7, 11278–11282.
1
F. Diederich and P. Stang, Metal-Catalysed Cross-Coupling Reactions,
Wiley-VCH, Weinheim, Germany, 1998.
(a) R. H. Seevers and R. E. Counsell, Chem. Rev., 1982, 82, 575–
16 (a) J. K. Kochi, Angew. Chem., 1988, 100, 1331–1372; (b) T. M.
Bockman and J. K. Kochi, J. Phys. Org. Chem., 1994, 7, 325–351;
(c) S. M. Hubig, W. Jung and J. K. Kochi, J. Org. Chem., 1994, 59,
6233–6244; (d) L. Eberson, M. P. Hartshorn, F. Radner and O. Persson,
J. Chem. Soc., Perkin Trans. 2, 1998, 59–70.
2
5
90; (b) M. Sovak, Radiocontrast Agents: Handbook of Experimental
Pharmacology, Springer, Berlin, 1993, vol. 73.
3
4
(a) E. B. Merkushev, Synthesis, 1988, 923–937; (b) Y. Sasson in
The Chemistry of Functional Groups, Supplement D2: The Chemistry
of Halides, Pseudo Halides and Azides, Part 2, ed. S. Patai and
Z. Rappoport, Wiley, Chichester, 1995, pp. 535–620.
17 M. Jereb, S. Stavber and M. Zupan, Synthesis, 2003, 853–858.
18 D. Dolenc, Synth. Commun., 2003, 33, 2917–2924.
19 R. C. Cambie, P. S. Rutledge, G. A. Strange and P. D. Woodgate,
J. Chem. Soc., Perkin Trans. 1, 1983, 553–565.
20 S. Uemura, H. Okazaki and M. Okano, J. Chem. Soc., Perkin Trans. 1,
1977, 1278–1282.
(a) L. Kraszkiewicz, M. Sosnowski and L. Skulski, Tetrahedron, 2004,
6
0, 9113–9119; (b) H. Suzuki, K. Nakamura and R. Goto, Bull. Chem.
This journal is © The Royal Society of Chemistry 2007
Org. Biomol. Chem., 2007, 5, 699–707 | 707