Please do not adjust margins
ChemComm
DOI: 10.1039/C6CC05506K
COMMUNICATION
ChemComm
Advances., 2015,
Chem. Soc. Rev., 2009, 38, 6.
M. P. Cassidy, J. Raushel and V. V. Fokin, Angew. Chem., Int.
Ed., 2006, 45, 3154.
5
, 90521; (d) E. Valeur and M. Bradley,
Afterward, nucleophilic addition of 2-aminopyridine to Cu(II)
phenylacetylide results in the formation of the complex Cu(III)
7
8
9
1
3c,20
species.
and reaction with molecular oxygen afford pyridine
Subsequent reductive elimination of Cu(III) to Cu(I)
M. Kohn and R. Breinbauer, Angew. Chem., Int. Ed., 2004, 43
3
,
106.
1
3c,21
ketoamides and regenerate CuCl.
aminopyridine (as a bidentate ligand) could coordinate to Cu .
Residual (free) 2-
For amidation of benzylalcohol; (a) S. Selvamurugan, R.
Ramachandran, G. Prakash, P. Viswanathamurthi, J. G.
Malecki, A. Endo, J. Organomet. Chem., 2016, 803, 119; (b)
amidation of ketone; W. Ding and Q. Song, Org. Chem.
I
I
Further photo excitation of the Cu -aminopyridine complex and
electron transfer to molecular oxygen leads to the formation
Front., 2015, 2, 765; (c) P. Subramanian, S. Indu and K. P.
of
complex.
bidentate
chelated
Indeed, copper(II) superoxo/-peroxo complex has
copper(II)
superoxo/-peroxo
1
7,22
Kaliappan, Org. Lett., 2014, 16, 6212; (d) X. Huang, X. Li, M.
Zou, S. Song, C. Tang, Y. Yuan and N. Jiao, J. Am. Chem. Soc.,
2014, 136, 14858, and references therein.
0 Other methods; (a) S. M. Crawford, C. B. Lavery and M.
Stradiotto, Chem. Eur. J., 2013, 19, 16760. (b) L. Gu, W.
a tendency to abstract acidic proton (i.e. pyridyl ketoamides,
1
2a,23
3
aa) to form N-centred radical.
Radical assisted carbon
monoxide elimination and recombination of N-centered
1
2
radical and carbon centered radical leads to formation of the
4
Wang, J. Liu, G. Li and M. Yuan, Green Chem., 2016, 18
604.
,
desired pyridyl benzamides product (3a).
2
In conclusion, we have demonstrated for the first time that C≡C 11 Cyclic product; (a) J. Zeng, Y. J. Tan, M. L. Leow and X.-W. Liu,
triple bond cleavage and facile synthesis of biologically important
pyridyl-amides can be acheived via visible light-initiated copper(I)
catalyzed oxidative C-N coupling of 2-aminopyridine with terminal
alkynes at room temperature. The current method works well for a
wide range of substrates including electron deficient 2-
aminopyridines and various terminal alkynes. The mechanistic
investigation illustrates that copper(II)-superoxo or -peroxo
complex is most probably responsible for oxidative cleavage of C≡C
triple bond in terminal alkynes. From the synthetic point of view,
exclusion of harsh condition, expensive catalyst, oxidants/base
Org. Lett., 2012, 14, 4386; (b) C. He, J. Hao, H. Xu, Y. Mo, H.
Liu, J. Han and A. Lei, Chem. Comm., 2012, 48, 11073.
2 For photoredox catalysis (Ru, -Ir); (a) C. K. Prier, D. A Rankic
and D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322; for
copper-photoredox catalysis; (b) S. Paria and O. Reiser,
1
ChemCatChem., 2014, 6, 2477; (c) S. E. Creutz, K. J. Lotito, G.
C. Fu and J. C. Peters, Science., 2012, 338, 647; (d) D. T.
Ziegler, J. Choi, J. M. Muñoz-Molina, A. Bissember, J. C.
Peters and G. C. Fu, J. Am. Chem. Soc., 2013, 135, 13107. (e)
L. Gu, C. Jin, J. Liu, H. Zhang, M. Yuan and G. Li, Green Chem.,
2016, 18, 1201.
make this method is extremely simple and efficient way to 13 (a) A. Sagadevan and K. C. Hwang, Adv. Synth. Catal., 2012,
3
54, 3421; (b) A. Sagadevan, A. Ragupathi, and K. C. Hwang,
construction of pyridyl-amides under mild conditions.
Photochem. Photobiol. Sci., 2013, 12, 2110; (c) A. Sagadevan,
A. Ragupathi, C.–C. Lin, J. R. Hwu and K. C. Hwang, Green
Chem., 2015, 17, 1113; (d) A. Sagadevan, A. Ragupathi and K.
C. Hwang, Angew. Chem., Int. Ed., 2015, 54, 13896; (e) A.
Sagadevan, P. C. Lyu, and K. C. Hwang, Green Chem., DOI:
Acknowledgments; this work was supported by the Ministry of
Science and Technology, Taiwan.
10.1039/c6gc01463a.
4 (a) M. Gholami, and R. R. Tykwinski, Chem. Rev., 2006, 106
Notes and references
1
,
4997; (b) R. Chinchilla and C. Najera, Chem. Soc. Rev., 2011,
40, 5084.
1
Selected examples; (a) F. Chen, T. Wang and N. Jiao, Chem.
Rev., 2014, 114, 8613; (b) T. Wang and N. Jiao, Acc. Chem.
Res., 2014, 47, 1137. (c) M. Gaydou and A. M. Echavarren, 15 See the Supporting Information. CCDC 1476789 (4k) contains
Angew. Chem. Int. Ed., 2013, 52, 13468.
the supplementary crystallographic data for this paper.
R. M. Moriarty, R. Penmasta, A. K. Awasthi and I. Prakash, J. 16 J. E. Hein and V. V. Fokin, Chem. Soc. Rev., 2010, 39, 1302,
Org. Chem., 1988, 53, 6124.
and references therein.
Selected examples; for Ru metal: (a) S. Datta, C.-L. Chang, K.- 17 (a) S. D. McCann, and S. S. Stahl, Acc. Chem. Res., 2015, 48
2
3
,
L. Yeh and R.-S. Liu, J. Am. Chem. Soc., 2003, 125, 9294; for
Pd: (b) A.-Z. Wang and H.-F. Jiang, J. Am. Chem. Soc., 2008,
1756; (b) K. K. Toh, Y.-F. Wang, E. P. J. Ng and S. Chiba, J. Am.
Chem. Soc., 2011, 133, 13942.
130, 5030; for Ag: (c) T. Shen, T. Wang, C. Qin and N. Jiao, 18 V. W.-W. Yam, K. K.-W. Lo and K. M.-C. Wong, J. Organomet.
Angew. Chem., Int. Ed., 2013, 52, 6677; for Au: (d) C. Qin, Y.
Chem., 1999, 578, 3.
Su, T. Shen, X. Shi and N. Jiao, Angew. Chem., Int. Ed., 2016, 19 M. Majek and A. Jacobi von Wangelin, Angew.Chem., Int. Ed.,
5
5
, 350; for Rh: (e) C.-H. Jun, H. Lee, C. W. Moon, and H.-S.
2013, 52, 5919.
20 A. E. Wendlandt, A. M. Suess and S. S. Stahl, Angew. Chem.,
Int. Ed., 2011, 50, 11062.
Hong, J. Am. Chem. Soc., 2001, 123, 8600.
(a) V. R. Pattabiraman and J. W. Bode, Nature., 2011, 480,
4
5
4
2
71; (b) C. A. G. N Montalbetti and V. Falque, Tetrahedron., 21 J. Li and L. Neuville, Org. Lett., 2013, 15, 1752
005, 61, 10827; (c) F.-L. Zhang, Y.-F. Wang, G. H. Lonca, X. 22 S. E. Allen, R. R. Walvoord, R. Padilla-Salinas and M. C.
Kozlowski, Chem. Rev., 2013, 113, 6234.
(a) L. Ferrins, M. Gazdik, R. Rahmani, S. Varghese, M. L. 23 A. G. Condie, J. C. González-Gómez and C. R. J. Stephenson, J.
Sykes, A. J. Jones, V. M. Avery, K. L. White, E. Ryan, S. A.
Am. Chem. Soc., 2010, 132, 1464.
Charman, M. Kaiser, C. A. S. Bergström and J. B. Baell, J. Med. 24 a) G. K. Friestad, Tetrahedron., 2001, 57, 5461. (b) T. Xiong
.
Zhu and S. Chiba, Angew. Chem., Int. Ed., 2014, 53, 4390.
Chem., 2014, 57, 6393; (b) L. H. Heitman, J. D. Veldhoven, A.
Zweemer, K. Ye, J. Brussee and A. P. IJzerman, J. Med. Chem.,
and Q. Zhang, Chem .Soc. Rev., 2016, 45, 3069. (c) L. Zhou, S.
Tang, X. Qi, C. Lin, K. Liu, C. Liu, Y. Lan and A. Lei, Org. Lett.,
2014, 16, 3404.
2008, 51, 4724; (c) F. M. Matschinsky, Nature Rev. Drug
Discove., 2009, , 399;
8
(a) O. P. S. Patel, D. Anand, R. K. Maurya and P. P. Yadav,
Green Chem., 2015, 17, 3728; (b) S. Yang, H. Yan, X. Ren, X.
6
Shi, J. Li, Y. Wang and G. Huang, Tetrahedron., 2013, 69,
431; (c) R. Deshidi, M. A. Rizvi, and B. A. Shah, RSC
6
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins